Advertisement

Computational Mechanics

, Volume 38, Issue 4–5, pp 334–343 | Cite as

Compressible Flow SUPG Stabilization Parameters Computed from Degree-of-freedom Submatrices

  • Lucia Catabriga
  • Alvaro L. G. A. Coutinho
  • Tayfun E. Tezduyar
Original Paper

Abstract

We present, for the SUPG formulation of inviscid compressible flows, stabilization parameters defined based on the degree-of-freedom submatrices of the element-level matrices. With 2D steady-state test problems involving supersonic flows and shocks, we compare these stabilization parameters with the ones defined based on the full element-level matrices. We also compare them to the stabilization parameters introduced in the earlier development stages of the SUPG formulation of compressible flows. In all cases the formulation includes a shock-capturing term involving a shock-capturing parameter. We investigate the difference between updating the stabilization and shock-capturing parameters at the end of every time step and at the end of every nonlinear iteration within a time step. The formulation includes, as an option, an algorithmic feature that is based on freezing the shock-capturing parameter at its current value when a convergence stagnation is detected.

Keywords

Inviscid compressible flows Finite elements SUPG formulation Stabilization parameters Degree-of-freedom submatrices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Catabriga L, Coutinho ALGA (2002a) Implicit SUPG solution of Euler equations using edge-based data structures. Comput Methods Appl Mech Eng 191:3477–3490CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Catabriga L, Coutinho ALGA (2002b) Improving convergence to steady-state of implicit-SUPG solution of Euler equations. Commun Numer Methods Eng 18:345–353CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Catabriga L, Coutinho ALGA, Tezduyar TE (2002) Finite element SUPG parameters computed from local matrices for compressible flows. In: Proceedings of the 9th Brazilian congress of engineering and thermal sciences. Caxambu, BrazilGoogle Scholar
  5. 5.
    Catabriga L, Coutinho ALGA, Tezduyar TE (2003a) Finite element SUPG parameters computed from local dof-matrices for compressible flows. In: Proceedings of the 24th Iberian Latin-American congress on computational methods in engineering. Ouro Preto, BrazilGoogle Scholar
  6. 6.
    Catabriga L, Coutinho ALGA, Tezduyar TE (2003b) Finite element SUPG parameters computed from local edge matrices for compressible flows. In: Proceedings of the 17th international congress of mechanical engineering. Sao Paulo, BrazilGoogle Scholar
  7. 7.
    Catabriga L, Coutinho ALGA, Tezduyar TE (2004) Compressible flow SUPG stabilization parameters computed from element-edge matrices. Comput Fluid Dyn J 13:450–459Google Scholar
  8. 8.
    Catabriga L, Coutinho ALGA, Tezduyar TE (2005) Compressible flow SUPG parameters computed from element matrices. Commun Numer Methods Eng 21:465–476CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Donea J (1984) A Taylor–Galerkin method for convective transport problems. Int J Numer Methods Eng 20:101–120CrossRefzbMATHGoogle Scholar
  10. 10.
    Hughes TJR, Brooks AN (1979). A multi-dimensional upwind scheme with no crosswind diffusion. In: Hughes TJR (eds). finite element methods for convection dominated flows, AMD-vol 34, ASME, New York, pp 19–35Google Scholar
  11. 11.
    Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech Eng 45:217–284CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Hughes TJR, Franca LP, Mallet M (1987) A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems. Comput Methods Appl Mech Eng 63:97–112CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Johnson C, Navert U, Pitkäranta J (1984) Finite element methods for linear hyperbolic problems. Comput Methods Appl Mech Eng 45:285–312CrossRefzbMATHGoogle Scholar
  14. 14.
    Le Beau GJ, Tezduyar TE (1991) Finite element computation of compressible flows with the SUPG formulation. In: Advances in finite element analysis in fluid dynamics, FED-vol. 123. ASME, New York, pp 21–27Google Scholar
  15. 15.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Tezduyar TE (2001) Adaptive determination of the finite element stabilization parameters. In: Proceedings of the ECCOMAS computational fluid dynamics conference 2001 (CD-ROM). Swansea, WalesGoogle Scholar
  17. 17.
    Tezduyar TE (2002) Calculation of the stabilization parameters in SUPG and PSPG formulations. In: Proceedings of the 1st South-American congress on computational mechanics (CD-ROM). Santa Fe–Parana, ArgentinaGoogle Scholar
  18. 18.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Tezduyar TE, Hughes TJR (1982) Development of time-accurate finite element techniques for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. NASA Technical Report NASA-CR-204772, NASA. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970023187_19970349 54.pdfGoogle Scholar
  20. 20.
    Tezduyar TE, Hughes TJR (1983) Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations. In: Proceedings of AIAA 21st aerospace sciences meeting. AIAA Paper 83-0125, Reno, NevadaGoogle Scholar
  21. 21.
    Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411–430CrossRefzbMATHGoogle Scholar
  22. 22.
    Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput Methods Appl Mech Eng 59:307–325CrossRefzbMATHGoogle Scholar
  23. 23.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10): 27–36CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Lucia Catabriga
    • 1
  • Alvaro L. G. A. Coutinho
    • 2
  • Tayfun E. Tezduyar
    • 3
  1. 1.Department of Computer ScienceFederal University of Espírito Santo (UFES)GoiabeirasBrazil
  2. 2.Department of Civil Engineering - COPPEFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  3. 3.Team for Advanced Flow Simulation and Modeling (T*AFSM)Mechanical Engineering, Rice University - MS 321HoustonUSA

Personalised recommendations