Advertisement

Computational Mechanics

, Volume 39, Issue 3, pp 323–333 | Cite as

Heat Conduction Analysis of 3-D Axisymmetric and Anisotropic FGM Bodies by Meshless Local Petrov–Galerkin Method

  • J. SladekEmail author
  • V. Sladek
  • Ch. Hellmich
  • J. Eberhardsteiner
Original Paper

Abstract

The meshless local Petrov–Galerkin method is used to analyze transient heat conduction in 3-D axisymmetric solids with continuously inhomogeneous and anisotropic material properties. A 3-D axisymmetric body is created by rotation of a cross section around an axis of symmetry. Axial symmetry of geometry and boundary conditions reduces the original 3-D boundary value problem into a 2-D problem. The cross section is covered by small circular subdomains surrounding nodes randomly spread over the analyzed domain. A unit step function is chosen as test function, in order to derive local integral equations on the boundaries of the chosen subdomains, called local boundary integral equations. These integral formulations are either based on the Laplace transform technique or the time difference approach. The local integral equations are nonsingular and take a very simple form, despite of inhomogeneous and anisotropic material behavior across the analyzed structure. Spatial variation of the temperature and heat flux (or of their Laplace transforms) at discrete time instants are approximated on the local boundary and in the interior of the subdomain by means of the moving least-squares method. The Stehfest algorithm is applied for the numerical Laplace inversion, in order to retrieve the time-dependent solutions.

Keywords

Transient heat conduction problem Axisymmetric Anisotropic functionally graded materials Time-difference form Laplace transform Stehfest algorithm Meshless approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz M, Stegun IA (1964) Handbook of mathematical functions. Applied mathematics series. Dover Publications, New YorkGoogle Scholar
  2. 2.
    Atluri SN (2004) The meshless method, (MLPG) for domain& BIE discretizations. Tech Science Press, Los Angeles, p 680Google Scholar
  3. 3.
    Atluri SN, Shen S (2002) The meshless local Petrov-Galerkin (MLPG) method. Tech Science Press, Los Angeles, p 440Google Scholar
  4. 4.
    Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comp Meth Appl Mech Eng 139:3–47zbMATHCrossRefGoogle Scholar
  5. 5.
    Brebbia CA, Telles JCF, Wrobel LC (1984) Boundary element techniques. Springer, Berlin Heidelberg New YorkGoogle Scholar
  6. 6.
    Butterfield R (1978) An application of the boundary element method to potential flow problems in generally inhomogeneous bodies. In: Brebbia CA (eds) Recent advances in boundary element method. Pentech Press, LondonGoogle Scholar
  7. 7.
    Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon Press, OxfordGoogle Scholar
  8. 8.
    Curran DA, Cross M, Lewis BA (1980) Solution of parabolic differential equations by the boundary element method using discretization in time. Appl Math Model 4:398–400zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Davies B, Martin B (1979) Numerical inversion of the Laplace transform: a survey and comparison of methods. J Comput Phys 33:1–32zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    De S, Bathe KJ (2000) The method of finite spheres. Comput Mech 25:329–345zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Erdogan F, Wu BH (1996) Crack problems in FGM layers under thermal stresses. J Therm Stresses 19:237–265Google Scholar
  12. 12.
    Jin ZH (2002) An asymptotic solution of temperature field in a strip of a functionally graded material. Int Commun Heat Mass 29:887–895CrossRefGoogle Scholar
  13. 13.
    Jin ZH, Noda N (1993) An internal crack parallel to the boundary of a nonhomogeneous half plane under thermal loading. Int J Eng Sci 31:793–806zbMATHCrossRefGoogle Scholar
  14. 14.
    Jin ZH, Batra RC (1996) Stress intensity relaxation at the tip of an edge crack in a functionally graded material subjected to a thermal shock. J Therm Stresses 19:317–339Google Scholar
  15. 15.
    Jin ZH, Paulino GH (2001) Transient thermal stress analysis of an edge crack in a functionally graded material. Int J Fracture 107: 73–98CrossRefGoogle Scholar
  16. 16.
    Kim JH, Paulino GH (2002) Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. J Appl Mech 69:502–514CrossRefGoogle Scholar
  17. 17.
    Lancaster P, Salkauskas K (1981) Surfaces generated by moving least square methods. Math Comput 37:141–158zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Mikhailov SE (2002) Localized boundary-domain integral formulations for problems with variable coefficients. Eng Anal Boundary Elem 26:681–690zbMATHCrossRefGoogle Scholar
  19. 19.
    Miyamoto Y, Kaysser WA, Rabin BH, Kawasaki A, Ford RG (1999) Functionally Graded Materials; Design, Processing and Applications. Kluwer, DordrechtGoogle Scholar
  20. 20.
    Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method. Comput Mech 10:307–318zbMATHCrossRefGoogle Scholar
  21. 21.
    Noda N, Jin ZH (1993) Thermal stress intensity factors for a crack in a strip of a functionally gradient material. Int J Solids Struct 30:1039–1056zbMATHCrossRefGoogle Scholar
  22. 22.
    Noda N, Jin ZH (1994) A crack in functionally gradient materials under thermal shock. Arch Appl Mech 64:99–110zbMATHGoogle Scholar
  23. 23.
    Sladek J, Sladek V, Zhang Ch (2003a) Transient heat conduction analysis in functionally graded materials by the meshless local boundary integral equation method. Comput Mater Sci 28: 494–504CrossRefGoogle Scholar
  24. 24.
    Sladek J, Sladek V, Krivacek J, Zhang Ch (2003b) Local BIEM for transient heat conduction analysis in 3-D axisymmetric functionally graded solids. Comput Mech 32:169–176zbMATHCrossRefGoogle Scholar
  25. 25.
    Sladek J, Sladek V, Atluri SN (2004a) Meshless local Petrov-Galerkin method for heat conduction problem in an anisotropic medium. CMES – Comput Model Eng Sci 6:309–318zbMATHMathSciNetGoogle Scholar
  26. 26.
    Sladek J, Sladek V, Zhang Ch (2004b) A meshless local boundary integral equation method for heat conduction analysis in nonhomogeneous solids. J Chin Inst Eng 27:517–539Google Scholar
  27. 27.
    Sladek V, Sladek J, Zhang Ch (2005) Local integro-differential equations with domain elements for the numerical solution of partial differential equations with variable coefficients. J Eng Math 51:261–282zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Stehfest H (1970) Algorithm 368: numerical inversion of Laplace transform. Commun Assoc Comput Mach 13:47–49Google Scholar
  29. 29.
    Suresh S, Mortensen A (1998) Fundamentals of functionally graded materials. Institute of Materials, London, p 165Google Scholar
  30. 30.
    Sutradhar A, Paulino GH, Gray LJ (2002) Transient heat conduction in homogeneous and non-homogeneous materials by the Laplace transform Galerkin boundary element method. Eng Anal Bound Elem 26:119–132zbMATHCrossRefGoogle Scholar
  31. 31.
    Tanaka M, Tanaka K (1980) Transient heat conduction problems in inhomogeneous media discretized by means of boundary-volume element. Nucl Eng Des 60:381–387CrossRefGoogle Scholar
  32. 32.
    Zhu T, Zhang JD, Atluri SN (1998) A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach. Comput Mech 21:223–235zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Verlag 2006

Authors and Affiliations

  • J. Sladek
    • 1
    Email author
  • V. Sladek
    • 1
  • Ch. Hellmich
    • 2
  • J. Eberhardsteiner
    • 2
  1. 1.Institute of Construction and ArchitectureSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Institute for Mechanics of Materials and StructuresVienna University of TechnologyWienAustria

Personalised recommendations