Skip to main content
Log in

Mathematical foundations of the immersed finite element method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we propose an immersed solid system (ISS) method to efficiently treat the fluid–structure interaction (FSI) problems. Augmenting a fluid in the moving solid domain, we introduce a volumetric force to obtain the correct dynamics for both the fluid and the structure. We further define an Euler–Lagrange mapping to describe the motion of the immersed solid. A weak formulation (WF) is then constructed and shown to be equivalent to both the FSI and the ISS under certain regularity assumptions. The weak formulation (WF) may be computed numerically by an implicit algorithm with the finite element method, and the streamline upwind/Petrov–Galerkin method. Compared with the successful immersed boundary method (IBM) by Peskin and co-workers (J Comput Phys 160:705–719, 2000; Acta Numerica 11:479–517, 2002; SIAM J Sci Stat Comput 13(6):1361–1376, 1992) the ISS method applies to more general geometries with non-uniform grids and avoids the inaccuracy in approximating the Dirac delta function

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuska I (1971) Error-bounds for finite element method. Numer Math 16:322–333

    Article  MATH  MathSciNet  Google Scholar 

  2. Bathe KJ, Zhang H (2004) Finite element developments for general fluid flows with structural interactions. Int J Numer Meth Eng 60(1):213–232

    Article  MATH  Google Scholar 

  3. Belytschko TB, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures, Chapt 7. Wiley, New York

    Google Scholar 

  4. Brezzi F (1974) On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO Anal Numer R-2:129–151

    MATH  MathSciNet  Google Scholar 

  5. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comp Methods Appl Mech Eng 32:199–259

    Article  MATH  MathSciNet  Google Scholar 

  6. Feng ZG, Wang X, Michaelides EE (2003) A new approach to treat the solid-fluid boundary conditions in lattice boltzmann method. In: 7th US national congress on computational mechanics

  7. Gay M, Zhang L, Liu WK (2005) Angioplasty stent modeling using Immersed Finite Element Method. Comput Methods Appl Mech Eng (submitted)

  8. Hu HH, Patankar NA, Zhu MY (2001) Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique. J Comput Phys 169:427–462

    Article  MATH  MathSciNet  Google Scholar 

  9. Huerta A, Liu WK (1988) Viscous flow with large free surface motion. Comput Methods Appl Mech Eng 69:277–324

    Article  MATH  Google Scholar 

  10. Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska–Brezzi condition: A stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59:85–99

    Article  MATH  MathSciNet  Google Scholar 

  11. Hughes TJR, Liu WK, Zimmerman TK (1981) Lagrangian-Eulerian finite element formulations for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349

    Article  MATH  Google Scholar 

  12. Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3d flow simulations. Comput Mech 23:130–143

    Article  MATH  Google Scholar 

  13. Lai MC, Peskin CS (2000) An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J Comput Phys 160:705–719

    Article  MATH  MathSciNet  Google Scholar 

  14. Li S, Liu WK (2004) Meshfree Particle Methods: Chapt 8. Springer, Berlin Heidelberg New York

    Google Scholar 

  15. Liu WK (1981) Finite element procedures for fluid-structure interactions and application to liquid storage tanks. Nucl Eng Des 65:221–238

    Article  Google Scholar 

  16. Liu WK, Gvildys J (1986) Fluid-structure interaction of tanks with an eccentric core barrel. Comput Methods Appl Mech Eng 58:51–77

    Article  MATH  Google Scholar 

  17. Liu WK, Karpov EG, Park HS (2005) Nano mechanics and materials : theory, multiple scale analysis, and applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  18. Liu WK, Ma DC (1982) Computer implementation aspects for fluid-structure interaction problems. Comput Methods Appl Mech Eng 31:129–148

    Article  MATH  Google Scholar 

  19. Liu WK, Liu Y, Farrell D, Zhang L, Wang X, Fukui Y, Patankar N, Zhang Y, Bajaj C, Lee J, Hong J, Chen X, Hsu H (2005) Immersed finite element method and applications to biological systems. Comput Methods Appl Mech Eng (accepted)

  20. Liu Y, Chung J, Liu WK, Ruoff R (2005) Dielectrophoretic assembly of nanowires: simulation using immersed electrohydrodynamics (in preparation)

  21. Liu Y, Zhang L, Wang X, Liu WK (2004) Coupling of Navier–Stokes equations with protein molecular dynamics and its application to hemodynamics. Int J Numer Methods Fluids 46:1237–1252

    Article  MATH  MathSciNet  Google Scholar 

  22. McQueen DM, Peskin CS (1997) Shared-memory parallel vector implementation of the immersed boundary method for the computation of blood flow in the beating mammalian heart. J Supercomput 11:213–236

    Article  Google Scholar 

  23. Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25:220–252

    Article  MATH  MathSciNet  Google Scholar 

  24. Peskin CS (2002) The immersed boundary method. Acta Numerica 11:479–517

    Article  MathSciNet  MATH  Google Scholar 

  25. Peskin CS, McQueen DM (1989) A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid. J Comput Phys 81(2): 372–405

    Article  MATH  MathSciNet  Google Scholar 

  26. Peskin CS, McQueen DM (1993) Computational biofluid dynamics. Contemporary Math 141:161–186

    MATH  MathSciNet  Google Scholar 

  27. Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute Fluid- Structure Interactions: 3-D Computation. Comput Methods Appl Mech Eng 190:373–386

    Article  MATH  Google Scholar 

  28. Tezduyar TE (1992) Stabilized finite element formulations for incompressible-flow computations. Adv Appl Mech 28:1–44

    Article  MATH  MathSciNet  Google Scholar 

  29. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel Finite Element Computation of 3D Flows. Comput 26: 27–36

    Article  Google Scholar 

  30. Tezduyar TE, Sathe S (2004) Enhanced-Discretization Space-Time Technique (EDSTT). Comput Methods Appl Mech Eng 193:1385–1401

    Article  MATH  MathSciNet  Google Scholar 

  31. Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Archives Comput Methods Eng 8(2):83–130

    MATH  Google Scholar 

  32. Tu C, Peskin CS (1992) Stability and instability in the computation of flows with moving immersed boundaries: A comparison of three methods. SIAM J Sci Stat Comput 13(6):1361–1376

    Article  MATH  MathSciNet  Google Scholar 

  33. Wagner GJ, Ghosal S, Liu WK (2003) Particulate flow simulations using lubrication theory solution enrichment. Int J Numer Methods Eng 56:1261–1289

    Article  MATH  MathSciNet  Google Scholar 

  34. Wagner GJ, Moës N, Liu WK, Belytschko T (2001) The extended finite element method for rigid particles in stokes flow. Int J Numer 51:293–313

    Article  MATH  Google Scholar 

  35. Wang X, Liu WK (2004) Extended immersed boundary method using FEM and RKPM. Comput Methods Appl Mech Eng 193(12–14):1305–1321

    Article  MATH  Google Scholar 

  36. Zhang L, Gersternberger A, Wang X, Liu WK (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193:2051–2067

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wing Kam Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W.K., Kim, D.W. & Tang, S. Mathematical foundations of the immersed finite element method. Comput Mech 39, 211–222 (2007). https://doi.org/10.1007/s00466-005-0018-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-005-0018-5

Keywords

Navigation