Advertisement

Computational Mechanics

, Volume 39, Issue 3, pp 211–222 | Cite as

Mathematical foundations of the immersed finite element method

  • Wing Kam Liu
  • Do Wan Kim
  • Shaoqiang Tang
Original Paper

Abstract

In this paper, we propose an immersed solid system (ISS) method to efficiently treat the fluid–structure interaction (FSI) problems. Augmenting a fluid in the moving solid domain, we introduce a volumetric force to obtain the correct dynamics for both the fluid and the structure. We further define an Euler–Lagrange mapping to describe the motion of the immersed solid. A weak formulation (WF) is then constructed and shown to be equivalent to both the FSI and the ISS under certain regularity assumptions. The weak formulation (WF) may be computed numerically by an implicit algorithm with the finite element method, and the streamline upwind/Petrov–Galerkin method. Compared with the successful immersed boundary method (IBM) by Peskin and co-workers (J Comput Phys 160:705–719, 2000; Acta Numerica 11:479–517, 2002; SIAM J Sci Stat Comput 13(6):1361–1376, 1992) the ISS method applies to more general geometries with non-uniform grids and avoids the inaccuracy in approximating the Dirac delta function

Keywords

Fluid-Structure interaction Euler-Lagrange mapping Immersed finite element method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babuska I (1971) Error-bounds for finite element method. Numer Math 16:322–333CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bathe KJ, Zhang H (2004) Finite element developments for general fluid flows with structural interactions. Int J Numer Meth Eng 60(1):213–232CrossRefzbMATHGoogle Scholar
  3. 3.
    Belytschko TB, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures, Chapt 7. Wiley, New YorkGoogle Scholar
  4. 4.
    Brezzi F (1974) On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO Anal Numer R-2:129–151zbMATHMathSciNetGoogle Scholar
  5. 5.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comp Methods Appl Mech Eng 32:199–259CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Feng ZG, Wang X, Michaelides EE (2003) A new approach to treat the solid-fluid boundary conditions in lattice boltzmann method. In: 7th US national congress on computational mechanicsGoogle Scholar
  7. 7.
    Gay M, Zhang L, Liu WK (2005) Angioplasty stent modeling using Immersed Finite Element Method. Comput Methods Appl Mech Eng (submitted)Google Scholar
  8. 8.
    Hu HH, Patankar NA, Zhu MY (2001) Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique. J Comput Phys 169:427–462CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Huerta A, Liu WK (1988) Viscous flow with large free surface motion. Comput Methods Appl Mech Eng 69:277–324CrossRefzbMATHGoogle Scholar
  10. 10.
    Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska–Brezzi condition: A stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59:85–99CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Hughes TJR, Liu WK, Zimmerman TK (1981) Lagrangian-Eulerian finite element formulations for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349CrossRefzbMATHGoogle Scholar
  12. 12.
    Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3d flow simulations. Comput Mech 23:130–143CrossRefzbMATHGoogle Scholar
  13. 13.
    Lai MC, Peskin CS (2000) An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J Comput Phys 160:705–719CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Li S, Liu WK (2004) Meshfree Particle Methods: Chapt 8. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. 15.
    Liu WK (1981) Finite element procedures for fluid-structure interactions and application to liquid storage tanks. Nucl Eng Des 65:221–238CrossRefGoogle Scholar
  16. 16.
    Liu WK, Gvildys J (1986) Fluid-structure interaction of tanks with an eccentric core barrel. Comput Methods Appl Mech Eng 58:51–77CrossRefzbMATHGoogle Scholar
  17. 17.
    Liu WK, Karpov EG, Park HS (2005) Nano mechanics and materials : theory, multiple scale analysis, and applications. Springer, Berlin Heidelberg New YorkGoogle Scholar
  18. 18.
    Liu WK, Ma DC (1982) Computer implementation aspects for fluid-structure interaction problems. Comput Methods Appl Mech Eng 31:129–148CrossRefzbMATHGoogle Scholar
  19. 19.
    Liu WK, Liu Y, Farrell D, Zhang L, Wang X, Fukui Y, Patankar N, Zhang Y, Bajaj C, Lee J, Hong J, Chen X, Hsu H (2005) Immersed finite element method and applications to biological systems. Comput Methods Appl Mech Eng (accepted)Google Scholar
  20. 20.
    Liu Y, Chung J, Liu WK, Ruoff R (2005) Dielectrophoretic assembly of nanowires: simulation using immersed electrohydrodynamics (in preparation)Google Scholar
  21. 21.
    Liu Y, Zhang L, Wang X, Liu WK (2004) Coupling of Navier–Stokes equations with protein molecular dynamics and its application to hemodynamics. Int J Numer Methods Fluids 46:1237–1252CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    McQueen DM, Peskin CS (1997) Shared-memory parallel vector implementation of the immersed boundary method for the computation of blood flow in the beating mammalian heart. J Supercomput 11:213–236CrossRefGoogle Scholar
  23. 23.
    Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25:220–252CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Peskin CS (2002) The immersed boundary method. Acta Numerica 11:479–517CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Peskin CS, McQueen DM (1989) A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid. J Comput Phys 81(2): 372–405CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Peskin CS, McQueen DM (1993) Computational biofluid dynamics. Contemporary Math 141:161–186zbMATHMathSciNetGoogle Scholar
  27. 27.
    Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute Fluid- Structure Interactions: 3-D Computation. Comput Methods Appl Mech Eng 190:373–386CrossRefzbMATHGoogle Scholar
  28. 28.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible-flow computations. Adv Appl Mech 28:1–44zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel Finite Element Computation of 3D Flows. Comput 26: 27–36CrossRefGoogle Scholar
  30. 30.
    Tezduyar TE, Sathe S (2004) Enhanced-Discretization Space-Time Technique (EDSTT). Comput Methods Appl Mech Eng 193:1385–1401CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Archives Comput Methods Eng 8(2):83–130zbMATHGoogle Scholar
  32. 32.
    Tu C, Peskin CS (1992) Stability and instability in the computation of flows with moving immersed boundaries: A comparison of three methods. SIAM J Sci Stat Comput 13(6):1361–1376CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Wagner GJ, Ghosal S, Liu WK (2003) Particulate flow simulations using lubrication theory solution enrichment. Int J Numer Methods Eng 56:1261–1289CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Wagner GJ, Moës N, Liu WK, Belytschko T (2001) The extended finite element method for rigid particles in stokes flow. Int J Numer 51:293–313CrossRefzbMATHGoogle Scholar
  35. 35.
    Wang X, Liu WK (2004) Extended immersed boundary method using FEM and RKPM. Comput Methods Appl Mech Eng 193(12–14):1305–1321CrossRefzbMATHGoogle Scholar
  36. 36.
    Zhang L, Gersternberger A, Wang X, Liu WK (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193:2051–2067CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe Technological Institute Northwestern UniversityEvanstonUSA
  2. 2.Department of MathematicsSunmoon UniversityAsan-siRepublic of Korea
  3. 3.LTCS, Department of Mechanics and Engineering SciencePeking UniversityBeijingChina

Personalised recommendations