Computational Mechanics

, Volume 36, Issue 6, pp 409–420 | Cite as

Parallel Krylov methods and the application to 3-d simulations of a triphasic porous media model in soil mechanics

Article

Abstract

We introduce a general parallel model for solving coupled nonlinear and time-dependent problems in soil mechanics, where we employ general purpose linear solvers with specially adjusted preconditioners. In particular, we present a parallel realization of the GMRES method applied to a triphasic porous media model in soil mechanics, where we compute the deformation of unsaturated soil together with the pore-fluid flow of water and air in the soil. Therefore, we propose a pointwise preconditioner coupling all unknowns at the nodal points. In two large-scale numerical experiments we finally present an extended evaluation of our parallel model for demanding configurations of the triphasic model.

Keywords

Parallel computing Krylov methods Theory of Porous Media Non-associated elasto-viscoplasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrett R, Berry M, Chan T, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C, van der Vorst H (1994) Templates for the solution of linear systems. SIAM, Philadelphia, ftp://ftp.netlib.org/templates/templates.psGoogle Scholar
  2. Bastian P (1996) Parallele adaptive Mehrgitterverfahren. Teubner Skripten zur Numerik. Teubner, StuttgartGoogle Scholar
  3. de Boer R (2000) Theory of Porous Media. Springer-Verlag, BerlinGoogle Scholar
  4. Ehlers W (1995) A single-surface yield function for geomaterials. Archive of Applied Mech 65:246–259Google Scholar
  5. Ehlers W (2002) Foundations of multiphasic and porous materials. In Ehlers W, Bluhm J (eds) Porous Media: Theory, Experiments and Numerical Applications. Springer-Verlag, Berlin pp. 3–86Google Scholar
  6. Ehlers W, Graf T, Ammann M (2004) Deformation and localization analysis in partially saturated soil. Computer Methods in Applied Mech Eng 193:2885–2910CrossRefGoogle Scholar
  7. Helmig R (1997) Multiphase Flow and Transport Processes in the Subsurface. Springer-Verlag, BerlinGoogle Scholar
  8. Helmig R, Huber R (1998) Comparison of Galerkin-type discretization techniques for two-phase flow in heterogeneous porous media. Advances in Water Resources, 21:697–711Google Scholar
  9. Lewis RW, Schrefler BA (1998) The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2 nd Edition. Wiley, ChichesterGoogle Scholar
  10. Mahnkopf D (2000) Lokalisierung fluidgesättigter poröser Festkörper bei finiten elastoplastischen Deformationen. Dissertation, Bericht Nr. II-5 aus dem Institut für Mechanik (Bauwesen), Universität StuttgartGoogle Scholar
  11. Müllerschön H (2000) Spannungs-Verzerrungsverhalten granularer Materialien am Beispiel von Berliner Sand. Dissertation, Bericht Nr. II-6 aus dem Institut für Mechanik (Bauwesen), Universität StuttgartGoogle Scholar
  12. Perzyna P (1966) Fundamental problems in viscoplasticity. Advances in Applied Mech 9:243–377Google Scholar
  13. Schöberl J (1997) NETGEN – an advancing front 2d/3d-mesh generator based on abstract rules. Computing and Visualization in Science 1:40–52Google Scholar
  14. Stroud AH (1971) Approximate Calculation of Multiple Integrals. Prentice-Hall, New JerseyGoogle Scholar
  15. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America J. 44:892–898Google Scholar
  16. Wieners C, Ammann M, Diebels S, Ehlers W (2002) Parallel 3-d simulations for porous media models in soil mechanics. Comput Mech 29:73–87CrossRefGoogle Scholar
  17. Wieners C, Ammann M, Ehlers W (2004) Distributed Point Objects: A new concept for parallel finite elements applied to a geomechanical problem. Future Generation Computer Systems, in pressGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Institut für Mechanik (Bauwesen)Universität StuttgartStuttgartGermany
  2. 2.Institut für Praktische MathematikUniversität KarlsruheKarlsruheGermany

Personalised recommendations