Advertisement

Computational Mechanics

, Volume 29, Issue 4–5, pp 382–391 | Cite as

A localized differential quadrature (LDQ) method and its application to the 2D wave equation

  • Z. Zong
  • K. Y. Lam

Abstract

 Differential Quadrature (DQ) is a numerical technique of high accuracy, but it is sensitive to grid distribution and requires that the number of grid points cannot be too large. These two requirements greatly restrict wider applications of DQ method. Through a simplified stability analysis in this paper, it is concluded that these two limitations are due to stability requirements. This analysis leads us to propose to localize differential quadrature to a small neighbourhood so as to keep the balance of accuracy and stability. The derivatives at a grid point are approximated by a weighted sum of the points in its neighbourhood rather than of all grid points. The method is applied to the one- and two-dimensional wave equations. Numerical examples show the present method produces very accurate results while maintaining good stability. The proposed method enables us to solve more complicated problems and enhance DQ's flexibility significantly.

Keywords Localization, Differential quadrature, Stability, The wave equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Z. Zong
    • 1
  • K. Y. Lam
    • 1
  1. 1.Institute of High Performance Computing, 1 Science Park Road, #01-01, The Capricorn, Singapore Science Park II, Singapore 117528 e-mail: zongzhi@ihpc.a-star.edu.sgSG

Personalised recommendations