Advertisement

Surgical Endoscopy

, Volume 34, Issue 2, pp 501–509 | Cite as

Robotic versus open pancreaticoduodenectomy: a meta-analysis of short-term outcomes

  • Qing Yan
  • Lei-bo Xu
  • Ze-fang Ren
  • Chao LiuEmail author
Review Article
  • 119 Downloads

Abstract

Background

Although robotic surgery is popular around the world, its safety and efficacy over classical open surgery is still controversial. The purpose of this article is to compare the safety and efficacy of robotic pancreaticoduodenectomy (RPD) and open pancreaticoduodenectomy (OPD).

Methods

A literature search of PubMed, Web of Science, and the Cochrane Library database up to July 29, 2018 was performed and the meta-analysis was performed using RevMan 5.2 software with Fixed and random effects models applied. The IRB approval and written consent were not needed for this paper.

Results

Twelve non-randomized retrospective studies and 1 non-randomized prospective study consisting of 2403 patients were included in this meta-analysis. There were 788 (33%) patients in the RPD group and 1615 (67%) patients in the OPD group. Although RPD was associated with a longer operative time (weighted mean difference [WMD]: 71.74 min; 95% CI 23.37–120.12; p = 0.004), patient might benefit from less blood loss (WMD: − 374.03 ml; 95% CI − 506.84 to − 241.21; p < 0.00001), shorter length of stay (WMD: − 5.19 day; 95% CI − 8.42 to − 1.97; p = 0.002), and lower wound infection rate (odds ratio: 0.17; 95% CI 0.04–0.80; p = 0.02). No statistically significant difference was observed in positive margin rate, lymph nodes harvested, postoperative complications, reoperation or readmission rate, and mortality rate.

Conclusions

Robotic pancreaticoduodenectomy is a safe and feasible alternative to open pancreaticoduodenectomy with regard to short-term outcomes. Further studies on the long-term outcomes of these surgical techniques are needed.

Keywords

Robot Open Pancreaticoduodenectomy Meta-analysis 

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of China (81672412), the Natural Science Foundation of China (81772597), Science and Technology Program of Guangzhou, China (201607010111), the Guangdong Science and Technology Foundation (2017A020215196), the Guangdong Natural Science Foundation (2017A030311002), Pearl River S&T Nova Program of Guangzhou, China (201610010022), Fundamental Research Funds for the Central Universities of Sun Yat-sen University (17ykpy44), Grant [2013]163 from Key Laboratory of Malignant Tumor Molecular Mechanism and Translational Medicine of Guangzhou Bureau of Science and Information Technology, Grant KLB09001 from the Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, and Grant from Guangdong Science and Technology Department (2015B050501004).

Compliance with ethical standards

Disclosures

Drs. Qing Yan, Lei-bo Xu, Ze-fang Ren, and Chao Liu have no conflicts of interest or financial ties to disclose.

Supplementary material

464_2019_7084_MOESM1_ESM.jpg (358 kb)
Supplementary Fig. 1. Forest plot showing the results of the meta-analysis regarding positive margin rate. Supplementary material 1 (JPEG 358 kb)
464_2019_7084_MOESM2_ESM.jpg (302 kb)
Supplementary Fig. 2. Forest plot showing the results of the meta-analysis regarding lymph nodes harvested. Supplementary material 2 (JPEG 302 kb)
464_2019_7084_MOESM3_ESM.jpg (297 kb)
Supplementary Fig. 3. Forest plot showing the results of the meta-analysis regarding Clavien–Dindo grade ≥ III Supplementary material 3 (JPEG 296 kb)
464_2019_7084_MOESM4_ESM.jpg (274 kb)
Supplementary Fig. 4. Forest plot showing the results of the meta-analysis regarding postoperative bleeding. Supplementary material 4 (JPEG 274 kb)
464_2019_7084_MOESM5_ESM.jpg (355 kb)
Supplementary Fig. 5. Forest plot showing the results of the meta-analysis regarding pancreatic fistula. Supplementary material 5 (JPEG 354 kb)
464_2019_7084_MOESM6_ESM.jpg (340 kb)
Supplementary Fig. 6. Forest plot showing the results of the meta-analysis regarding severe pancreatic fistula. Supplementary material 6 (JPEG 339 kb)
464_2019_7084_MOESM7_ESM.jpg (567 kb)
Supplementary Fig. 7. Forest plot showing the results of the meta-analysis regarding mortality. Supplementary material 7 (JPEG 566 kb)
464_2019_7084_MOESM8_ESM.jpg (586 kb)
Supplementary Fig. 8. Forest plot showing the results of the meta-analysis regarding reoperation or readmission. Supplementary material 8 (JPEG 586 kb)
464_2019_7084_MOESM9_ESM.doc (74 kb)
Supplementary material 9 (DOC 73 kb)

References

  1. 1.
    Palanivelu C, Rajan PS, Rangarajan M, Vaithiswaran V, Senthilnathan P, Parthasarathi R, Praveen Raj P (2009) Evolution in techniques of laparoscopic pancreaticoduodenectomy: a decade long experience from a tertiary center. J Hepatobiliary Pancreat Surg 16:731–740CrossRefGoogle Scholar
  2. 2.
    Gagner M, Pomp A (1994) Laparoscopic pylorus-preserving pancreatoduodenectomy. Surg Endosc 8:408–410CrossRefGoogle Scholar
  3. 3.
    Chen S, Chen J-Z, Zhan Q, Deng X-X, Shen B-Y, Peng C-H, Li H-W (2015) Robot-assisted laparoscopic versus open pancreaticoduodenectomy: a prospective, matched, mid-term follow-up study. Surg Endosc Other Interv Tech 29:3698–3711CrossRefGoogle Scholar
  4. 4.
    Sharpe SM, Talamonti MS, Wang CE, Prinz RA, Roggin KK, Bentrem DJ, Winchester DJ, Marsh RD, Stocker SJ, Baker MS (2015) Early national experience with laparoscopic pancreaticoduodenectomy for ductal adenocarcinoma: a comparison of laparoscopic pancreaticoduodenectomy and open pancreaticoduodenectomy from The National Cancer Data Base. J Am Coll Surg 221:175–184CrossRefGoogle Scholar
  5. 5.
    Gumbs AA, Rodriguez Rivera AM, Milone L, Hoffman JP (2011) Laparoscopic pancreatoduodenectomy: a review of 285 published cases. Ann Surg Oncol 18:1335–1341CrossRefGoogle Scholar
  6. 6.
    Tan GY, Goel RK, Kaouk JH, Tewari AK (2009) Technological advances in robotic-assisted laparoscopic surgery. Urol Clin North Am 36(237–249):ixGoogle Scholar
  7. 7.
    Giulianotti PC, Coratti A, Angelini M, Sbrana F, Cecconi S, Balestracci T, Caravaglios G (2003) Robotics in general surgery: personal experience in a large community hospital. Arch Surg 138:777–784CrossRefGoogle Scholar
  8. 8.
    Peng L, Lin S, Li Y, Xiao W (2017) Systematic review and meta-analysis of robotic versus open pancreaticoduodenectomy. Surg Endosc 31:3085–3097CrossRefGoogle Scholar
  9. 9.
    Bassi C, Dervenis C, Butturini G, Fingerhut A, Yeo C, Izbicki J, Neoptolemos J, Sarr M, Traverso W, Buchler M, International Study Group on Pancreatic Fistula D (2005) Postoperative pancreatic fistula: an international study group (ISGPF) definition. Surgery 138:8–13CrossRefGoogle Scholar
  10. 10.
    Wells G (2004) The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies inmeta-analyses. Ottawa Hospital Research Institute Web site. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
  11. 11.
    Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13CrossRefGoogle Scholar
  12. 12.
    Zureikat AH, Postlewait LM, Liu Y, Gillespie TW, Weber SM, Abbott DE, Ahmad SA, Maithel SK, Hogg ME, Zenati M, Cho CS, Salem A, Xia B, Steve J, Nguyen TK, Keshava HB, Chalikonda S, Walsh RM, Talamonti MS, Stocker SJ, Bentrem DJ, Lumpkin S, Kim HJ, Zeh HJ, Kooby DA (2016) A multi-institutional comparison of perioperative outcomes of robotic and open pancreaticoduodenectomy. Ann Surg.  https://doi.org/10.1097/SLA.0000000000001869 CrossRefPubMedGoogle Scholar
  13. 13.
    Zhou N-x, Chen J-z, Liu Q, Zhang X, Wang Z, Ren S, Chen X-f (2011) Outcomes of pancreatoduodenectomy with robotic surgery versus open surgery. Int J Med Robot Comput Assisted Surg 7:131–137CrossRefGoogle Scholar
  14. 14.
    Ross SW, Seshadri R, Oommen B, Hanna EM, Swan RZ, Walters A, Augenstein VA, Sindram D, Heniford BT, Iannitti DA, Martinie JB (2015) Robotic pancreaticoduodenectomy: comparison of complications and cost to the open approach. Gastroenterology 146:S1068–S1069CrossRefGoogle Scholar
  15. 15.
    McMillan MT, Zureikat AH, Hogg ME, Kowalsky SJ, Zeh HJ, Sprys MH, Vollmer CM Jr (2017) A propensity score-matched analysis of robotic vs open pancreatoduodenectomy on incidence of pancreatic fistula. JAMA Surg 152:327–335CrossRefGoogle Scholar
  16. 16.
    Lai ECH, Yang GPC, Tang CN (2012) Robot-assisted laparoscopic pancreaticoduodenectomy versus open pancreaticoduodenectomy: a comparative study. Int J Surg 10:475–479CrossRefGoogle Scholar
  17. 17.
    Kim HS, Han Y, Kang JS, Kim H, Kim JR, Koon W, Kim S-W, Jang J-Y (2018) Comparison of surgical outcomes between open and robot-assisted minimally invasive pancreaticoduodenectomy. J Hepato-Biliary-Pancreat Sci 25:142–149CrossRefGoogle Scholar
  18. 18.
    Chalikonda S, Aguilar-Saavedra JR, Walsh RM (2012) Laparoscopic robotic-assisted pancreaticoduodenectomy: a case-matched comparison with open resection. Surg Endosc 26:2397–2402CrossRefGoogle Scholar
  19. 19.
    Buchs NC, Addeo P, Bianco FM, Ayloo S, Benedetti E, Giulianotti PC (2011) Robotic versus open pancreaticoduodenectomy: a comparative study at a single institution. World J Surg 35:2739–2746CrossRefGoogle Scholar
  20. 20.
    Boggi U, Napoli N, Costa F, Kauffmann EF, Menonna F, Iacopi S, Vistoli F, Amorese G (2016) Robotic-assisted pancreatic resections. World J Surg 40:2497–2506CrossRefGoogle Scholar
  21. 21.
    Bao PQ, Mazirka PO, Watkins KT (2014) Retrospective comparison of robot-assisted minimally invasive versus open pancreaticoduodenectomy for periampullary neoplasms. J Gastrointest Surg 18:682–689CrossRefGoogle Scholar
  22. 22.
    Napoli N, Kauffmann EF, Menonna F, Costa F, Iacopi S, Amorese G, Giorgi S, Baggiani A, Boggi U (2018) Robotic versus open pancreatoduodenectomy: a propensity score-matched analysis based on factors predictive of postoperative pancreatic fistula. Surg Endosc Other Interv Tech 32:1234–1247CrossRefGoogle Scholar
  23. 23.
    Kauffmann EF, Napoli N, Menonna F, Iacopi S, Lombardo C, Bernardini J, Amorese G, Cacciato Insilla A, Funel N, Campani D, Cappelli C, Caramella D, Boggi U (2018) A propensity score-matched analysis of robotic versus open pancreatoduodenectomy for pancreatic cancer based on margin status. Surg Endosc 32:1231–1247Google Scholar
  24. 24.
    Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240:205–213CrossRefGoogle Scholar
  25. 25.
    Gonzalez-Ciccarelli LF, Quadri P, Daskalaki D, Milone L, Gangemi A, Giulianotti PC (2016) Robotic approach to hepatobiliary surgery. German version. Chirurg 87:651–662CrossRefGoogle Scholar
  26. 26.
    Gumbs AA, Croner R, Rodriguez A, Zuker N, Perrakis A, Gayet B (2013) 200 consecutive laparoscopic pancreatic resections performed with a robotically controlled laparoscope holder. Surg Endosc 27:3781–3791CrossRefGoogle Scholar
  27. 27.
    Zimmerman AM, Roye DG, Charpentier KP (2018) A comparison of outcomes between open, laparoscopic and robotic pancreaticoduodenectomy. HPB 20:364–369CrossRefGoogle Scholar
  28. 28.
    Eiriksson K, Fors D, Rubertsson S, Arvidsson D (2011) High intra-abdominal pressure during experimental laparoscopic liver resection reduces bleeding but increases the risk of gas embolism. Br J Surg 98:845–852CrossRefGoogle Scholar
  29. 29.
    Vollmer CM Jr, Lewis RS, Hall BL, Allendorf JD, Beane JD, Behrman SW, Callery MP, Christein JD, Drebin JA, Epelboym I, He J, Pitt HA, Winslow E, Wolfgang C, Strasberg SM (2015) Establishing a quantitative benchmark for morbidity in pancreatoduodenectomy using ACS-NSQIP, the Accordion Severity Grading System, and the Postoperative Morbidity Index. Ann Surg 261:527–536CrossRefGoogle Scholar
  30. 30.
    Lim JE, Chien MW, Earle CC (2003) Prognostic factors following curative resection for pancreatic adenocarcinoma: a population-based, linked database analysis of 396 patients. Ann Surg 237:74–85CrossRefGoogle Scholar
  31. 31.
    Zhou JY, Xin C, Mou YP, Xu XW, Zhang MZ, Zhou YC, Lu C, Chen RG (2016) Robotic versus laparoscopic distal pancreatectomy: a meta-analysis of short-term outcomes. PLoS ONE 11:e0151189CrossRefGoogle Scholar
  32. 32.
    Ammori BJ (2004) Laparoscopic hand-assisted pancreaticoduodenectomy: initial UK experience. Surg Endosc 18:717–718CrossRefGoogle Scholar
  33. 33.
    Adam MA, Choudhury K, Dinan MA, Reed SD, Scheri RP, Blazer DG 3rd, Roman SA, Sosa JA (2015) Minimally invasive versus open pancreaticoduodenectomy for cancer: practice patterns and short-term outcomes among 7061 patients. Ann Surg 262:372–377CrossRefGoogle Scholar
  34. 34.
    Fisher WE, Hodges SE, Wu MF, Hilsenbeck SG, Brunicardi FC (2012) Assessment of the learning curve for pancreaticoduodenectomy. Am J Surg 203:684–690CrossRefGoogle Scholar
  35. 35.
    Boone BA, Zenati M, Hogg ME, Steve J, Moser AJ, Bartlett DL, Zeh HJ, Zureikat AH (2015) Assessment of quality outcomes for robotic pancreaticoduodenectomy: identification of the learning curve. JAMA surgery 150:416–422CrossRefGoogle Scholar
  36. 36.
    Schmidt CM, Turrini O, Parikh P, House MG, Zyromski NJ, Nakeeb A, Howard TJ, Pitt HA, Lillemoe KD (2010) Effect of hospital volume, surgeon experience, and surgeon volume on patient outcomes after pancreaticoduodenectomy: a single-institution experience. Arch Surg 145:634–640CrossRefGoogle Scholar
  37. 37.
    Tseng JF, Pisters PW, Lee JE, Wang H, Gomez HF, Sun CC, Evans DB (2007) The learning curve in pancreatic surgery. Surgery 141:694–701CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial HospitalSun Yat-sen UniversityGuangzhouChina
  2. 2.Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial HospitalSun Yat-sen UniversityGuangzhouChina
  3. 3.Department of Epidemiology & Statistics School of Public HealthSun Yat-sen UniversityGuangzhouChina

Personalised recommendations