Advertisement

Surgical Endoscopy

, Volume 34, Issue 1, pp 485–491 | Cite as

Feasibility of transanal total mesorectal excision (taTME) using the Medrobotics Flex® System

  • Heather Carmichael
  • Anthony P. D’Andrea
  • Matthew Skancke
  • Vincent Obias
  • Patricia SyllaEmail author
Dynamic Manuscript

Abstract

Background

The use of transanal total mesorectal excision (taTME) for treatment of rectal cancer is growing, but anatomic constraints prevent access to the proximal rectum with rigid instruments. The articulated instrumentation of current surgical robots is promising in overcoming these limitations, but the bulky size of current platforms inhibits the proximal reach of dissection. Flexible robotic systems could overcome these constraints while maintaining a stable platform for dissection. The goal of this study was to evaluate feasibility of performing taTME using the semi-robotic Flex® System (Medrobotics Corp., Raynham, MA) in human cadavers.

Methods

taTME was performed by two surgeons in six fresh human cadaveric specimens using the Flex® System, with or without transabdominal laparoscopic assistance. Both mid- and low-rectal lesions were simulated. Metrics including quality of visualization, maintenance of pneumorectum, maneuverability of instruments, effectiveness of pursestring suture placement, and dissection in an anatomically correct plane were evaluated.

Results

The semi-robotic endoluminal platform allowed for excellent visualization, insufflation, and dissection during taTME. Adequate pursestring occlusion of the rectum was achieved in all six cases. In cadavers with simulated mid-rectal lesions (N = 4), dissection and anterior peritoneal entry was achieved in all cases, with abdominal assistance utilized in two of four cases. In cadavers with simulated low-rectal lesions (N = 2), dissection was incomplete and aborted due to difficulty maneuvering instruments in close proximity to the rigid transanal port.

Conclusions

Use of the Flex® system for taTME is feasible for mid-rectal dissection. Advantages over the traditional multi-armed robot include longer reach of instruments with the ability to dissect up to 17 cm from the anal verge, as well as tactile feedback. The current design of the flexible platform does not permit safe dissection in the distal rectum, although this constraint may be resolved with future adjustments to the equipment.

Keywords

Transanal total mesorectal excision (taTME) Proctectomy Robotic surgery Rectal cancer Natural orifice transluminal endoscopic surgery (NOTES) Robotic transanal total mesorectal excision 

Notes

Compliance with ethical standards

Disclosures

Drs. Obias and Sylla are consultants for Medrobotics. Drs. Carmichael, D’Andrea, and Skancke have no conflicts of interest or financial ties to disclose.

Supplementary material

Supplementary material 1 (MP4 142060 kb)

References

  1. 1.
    MacFarlane JK, Ryall RD, Heald RJ (1993) Mesorectal excision for rectal cancer. Lancet 341:457–460CrossRefGoogle Scholar
  2. 2.
    Marijnen CA, Kapiteijn E, van de Velde CJ, Martijn H, Steup WH, Wiggers T, Kranenbarg EK, Leer JW, Cooperative Investigators of the Dutch Colorectal Cancer Group (2002) Acute side effects and complications after short-term preoperative radiotherapy combined with total mesorectal excision in primary rectal cancer: report of a multicenter randomized trial. J Clin Oncol 20:817–825CrossRefGoogle Scholar
  3. 3.
    Snijders H, Wouters M, van Leersum N, Kolfschoten N, Henneman D, de Vries A, Tollenaar R, Bonsing B (2012) Meta-analysis of the risk for anastomotic leakage, the postoperative mortality caused by leakage in relation to the overall postoperative mortality. Eur J Surg Oncol 38:1013–1019CrossRefGoogle Scholar
  4. 4.
    Jeong S, Park J, Nam B, Kim S, Kang S, Lim S, Choi H, Kim D, Chang H, Kim D, Jung K, Kim T, Kang G, Chie E, Kim S, Sohn D, Kim D, Kim J, Lee H, Kim J, Oh J (2014) Open versus laparoscopic surgery for mid-rectal or low-rectal cancer after neoadjuvant chemoradiotherapy (COREAN trial): survival outcomes of an open-label, non-inferiority, randomised controlled trial. Lancet Oncol 15:767–774CrossRefGoogle Scholar
  5. 5.
    Ohtani H, Tamamori Y, Azuma T, Mori Y, Nishiguchi Y, Maeda K, Hirakawa K (2011) A meta-analysis of the short- and long-term results of randomized controlled trials that compared laparoscopy-assisted and conventional open surgery for rectal cancer. J Gastrointest Surg 15:1375–1385CrossRefGoogle Scholar
  6. 6.
    Kang S, Park J, Jeong S, Nam B, Choi H, Kim D, Lim S, Lee T, Kim D, Kim J, Chang H, Lee H, Kim S, Jung K, Hong Y, Kim J, Sohn D, Kim D, Oh J (2010) Open versus laparoscopic surgery for mid or low rectal cancer after neoadjuvant chemoradiotherapy (COREAN trial): short-term outcomes of an open-label randomised controlled trial. Lancet Oncol 11:637–645CrossRefGoogle Scholar
  7. 7.
    Kang C, Halabi W, Luo R, Pigazzi A, Nguyen N, Stamos M (2012) Laparoscopic colorectal surgery: a better look into the latest trends. Arch Surg 147:724–731CrossRefGoogle Scholar
  8. 8.
    Guillou P, Quirke P, Thorpe H, Walker J, Jayne D, Smith A, Heath R, Brown J, MRC CLASICC trial group (2005) Short-term endpoints of conventional versus laparoscopic-assisted surgery in patients with colorectal cancer (MRC CLASICC trial): multicentre, randomised controlled trial. Lancet 365:1718–1726CrossRefGoogle Scholar
  9. 9.
    van der Pas M, Haglind E, Cuesta M, Fürst A, Lacy A, Hop W, Bonjer H, COlorectal cancer Laparoscopic or Open Resection II (COLOR II) Study Group (2013) Laparoscopic versus open surgery for rectal cancer (COLOR II): short-term outcomes of a randomised, phase 3 trial. Lancet Oncol 14:210–218CrossRefGoogle Scholar
  10. 10.
    Green B, Marshall H, Collinson F, Quirke P, Guillou P, Jayne D, Brown J (2013) Long-term follow-up of the Medical Research Council CLASICC trial of conventional versus laparoscopically assisted resection in colorectal cancer. Br J Surg 100:75–82CrossRefGoogle Scholar
  11. 11.
    Fleshman J, Branda M, Sargent D, Boller A, George V, Abbas M, Peters W, Maun D, Chang G, Herline A, Fichera A, Mutch M, Wexner S, Whiteford M, Marks J, Birnbaum E, Margolin D, Larson D, Marcello P, Posner M, Read T, Monson J, Wren S, Pisters P, Nelson H (2015) Effect of laparoscopic-assisted resection vs open resection of stage II or III rectal cancer on pathologic outcomes: the ACOSOG Z6051 randomized clinical trial. JAMA 314:1356–1364CrossRefGoogle Scholar
  12. 12.
    Stevenson A, Solomon M, Lumley J, Hewett P, Clouston A, Gebski V, Davies L, Wilson K, Hague W, Simes J (2015) Effect of laparoscopic-assisted resection vs open resection on pathological outcomes in rectal cancer: the ALaCaRT randomized clinical trial. JAMA 314:1356–1363CrossRefGoogle Scholar
  13. 13.
    Collinson F, Jayne D, Pigazzi A, Tsang C, Barrie J, Edlin R, Garbett C, Guillou P, Holloway I, Howard H, Marshall H, McCabe C, Pavitt S, Quirke P, Rivers C, Brown J (2012) An international, multicentre, prospective, randomised, controlled, unblinded, parallel-group trial of robotic-assisted versus standard laparoscopic surgery for the curative treatment of rectal cancer. Int J Colorectal Dis 27:233–241CrossRefGoogle Scholar
  14. 14.
    Tyler J, Fox J, Desai M, Perry W, Glasgow S (2013) Outcomes and costs associated with robotic colectomy in the minimally invasive era. Dis Colon Rectum 56:458–466CrossRefGoogle Scholar
  15. 15.
    Jayne D, Pigazzi A, Marshall H, Croft J, Corrigan N, Copeland J, Quirke P, West N, Rautio T, Thomassen N, Tilney H, Gudgeon M, Bianchi P, Edlin R, Hulme C, Brown J (2017) Effect of robotic-assisted vs conventional laparoscopic surgery on risk of conversion to open laparotomy among patients undergoing resection for rectal cancer: the ROLARR Randomized Clinical Trial. JAMA 318:1569–1580CrossRefGoogle Scholar
  16. 16.
    Sylla P, Sohn D, Cizginer S, Konuk Y, Turner B, Gee D, Willingham F, Hsu M, Mino-Kenudson M, Brugge W, Rattner D (2010) Survival study of natural orifice translumenal endoscopic surgery for rectosigmoid resection using transanal endoscopic microsurgery with or without transgastric endoscopic assistance in a swine model. Surg Endosc 24:2022–2030CrossRefGoogle Scholar
  17. 17.
    Sylla P, Rattner D, Delgado S, Lacy A (2010) NOTES transanal rectal cancer resection using transanal endoscopic microsurgery and laparoscopic assistance. Surg Endosc 24:1205–1210CrossRefGoogle Scholar
  18. 18.
    Telem D, Han K, Kim M, Ajari I, Sohn D, Woods K, Kapur V, Sbeih M, Perretta S, Rattner D, Sylla P (2013) Transanal rectosigmoid resection via natural orifice translumenal endoscopic surgery (NOTES) with total mesorectal excision in a large human cadaver series. Surg Endosc 27:74–80CrossRefGoogle Scholar
  19. 19.
    Penna M, Hompes R, Arnold S, Wynn G, Austin R, Warusavitarne J, Moran B, Hanna G, Mortensen N, Tekkis P, Collaborative TR (2016) Transanal total mesorectal excision: international registry results of the first 720 cases. Ann Surg 266:111CrossRefGoogle Scholar
  20. 20.
    Penna M, Hompes R, Arnold S, Wynn G, Austin R, Warusavitarne J, Moran B, Hanna G, Mortensen N, Tekkis P (2018) Incidence and risk factors for anastomotic failure in 1594 patients treated by transanal total mesorectal excision: results from the international TaTME registry. Ann Surg.  https://doi.org/10.1097/sla.0000000000002653 CrossRefGoogle Scholar
  21. 21.
    Maykel J (2015) Laparoscopic transanal total mesorectal excision (taTME) for rectal cancer. J Gastrointest Surg 19:1880–1888CrossRefGoogle Scholar
  22. 22.
    Koedam T, Veltcamp Helbach M, Van de Ven P, Kryut P, van Heek N, Bonjer H, Tuynman J, Sietses C (2018) Transanal total mesorectal excision for rectal cancer: evaluation of the learning curve. Tech Coloproctol 22:279–287CrossRefGoogle Scholar
  23. 23.
    Lee L, Kelly J, Nassif G, DeBeche-Adams T, Albert M, Monson J (2018) Defining the learning curve for transanal total mesorectal excision for rectal adenocarcinoma. Surg Endosc.  https://doi.org/10.1007/s00464-018-6360-4 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Atallah S, Parra-Davila E, DeBeche-Adams T, Albert M, Larach S (2012) Excision of a rectal neoplasm using robotic transanal surgery (RTS): a description of the technique. Tech Coloproctol 16:389–392CrossRefGoogle Scholar
  25. 25.
    Verheijen P, Consten E, Broeders I (2014) Robotic transanal total mesorectal excision for rectal cancer: experience with a first case. Int J Med Robot 10:423–426CrossRefGoogle Scholar
  26. 26.
    Gómez Ruiz M, Parra I, Palazuelos C, Martín J, Fernández C, Diego J, Fleitas M (2015) Robotic-assisted laparoscopic transanal total mesorectal excision for rectal cancer: a prospective pilot study. Dis Colon Rectum 58:145–153CrossRefGoogle Scholar
  27. 27.
    Atallah S, Martin-Perez B, Pinan J, Quinteros F, Schoonyoung H, Albert M, Larach S (2014) Robotic transanal total mesorectal excision: a pilot study. Tech Coloproctol 18:1047–1053CrossRefGoogle Scholar
  28. 28.
    Huscher C, Bretagnol F, Ponzano C (2015) Robotic-assisted transanal total mesorectal excision: the key against the Achilles’ heel of rectal cancer? Ann Surg 261:e120–121CrossRefGoogle Scholar
  29. 29.
    Kuo L, Ngu J, Tong Y, Chen C (2017) Combined robotic transanal total mesorectal excision (R-taTME) and single-site plus one-port (R-SSPO) technique for ultra-low rectal surgery-initial experience with a new operation approach. Int J Colorectal Dis 32:249–254CrossRefGoogle Scholar
  30. 30.
    Atallah S (2017) Assessment of a flexible robotic system for endoluminal applications and transanal total mesorectal excision (taTME): could this be the solution we have been searching for? Tech Coloproctol 21:809–814CrossRefGoogle Scholar
  31. 31.
    Johnson P, Rivera Serrano C, Castro M, Kuenzler R, Choset H, Tully S, Duvvuri U (2013) Demonstration of transoral surgery in cadaveric specimens with the medrobotics flex system. Laryngoscope 123:1168–1172CrossRefGoogle Scholar
  32. 32.
    Remacle M, Prasad MN, Lawson G, Plisson L, Bachy V, Van der Vorst S (2015) Transoral robotic surgery (TORS) with the Medrobotics Flex™ System: first surgical application on humans. Eur Arch Otorhinolaryngol 272:1451–1455CrossRefGoogle Scholar
  33. 33.
    Mandapathil M, Duvvuri U, Güldner C, Teymoortash A, Lawson G, Werner J (2015) Transoral surgery for oropharyngeal tumors using the Medrobotics(®) Flex(®) System—a case report. Int J Surg Case Rep 10:173–175CrossRefGoogle Scholar
  34. 34.
    Lang S, Mattheis S, Hasskamp P, Lawson G, Güldner C, Mandapathil M, Schuler P, Hoffmann T, Scheithauer M, Remacle M (2017) A european multicenter study evaluating the flex robotic system in transoral robotic surgery. Laryngoscope 127:391–395CrossRefGoogle Scholar
  35. 35.
    Jafari M, Carmichael J, Kopchok G, Pigazzi A (2017) A pilot study to evaluate a flexible robot for transanal surgeryGoogle Scholar
  36. 36.
    Friedrich D, Dürselen L, Mayer B, Hacker S, Schall F, Hahn J, Hoffmann T, Schuler P, Greve J (2018) Features of haptic and tactile feedback in TORS—a comparison of available surgical systems. J Robot Surg 12:103–108CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of SurgeryUniversity of ColoradoDenverUSA
  2. 2.Division of Colon and Rectal Surgery, Department of SurgeryIcahn School of Medicine at Mount SinaiNew YorkUSA
  3. 3.Department of General Surgery and Colorectal SurgeryGeorge Washington University School of MedicineWashingtonUSA

Personalised recommendations