Advertisement

Surgical Endoscopy

, Volume 34, Issue 2, pp 544–550 | Cite as

Predictors and outcomes of converted minimally invasive pancreaticoduodenectomy: a propensity score matched analysis

  • Caitlin A. Hester
  • Ibrahim Nassour
  • Alana Christie
  • Mathew M. Augustine
  • John C. Mansour
  • Patricio M. Polanco
  • Matthew R. Porembka
  • Thomas H. Shoultz
  • Sam C. Wang
  • Adam C. Yopp
  • Herbert J. ZehIII
  • Rebecca M. MinterEmail author
Article

Abstract

Background

Data-driven patient selection guidelines are not available to optimize outcomes in minimally invasive pancreaticoduodenectomy (MIPD). We aimed to define risk factors associated with conversion from MIPD to open PD and to determine the impact of conversion on post-operative outcomes.

Methods

We conducted a retrospective review of MIPD using NSQIP from 2014 to 2015. Propensity score was used to match patients who underwent completed MIPD to converted MIPD.

Results

467 patients were included: 375 (80.3%) MIPD and 92 (19.7%) converted. Converted patients were more often male (64% vs. 52%, p = 0.030), had higher rates of dyspnea (10% vs. 3%, p = 0.009), underwent more vascular (44% vs. 14%, p < 0.001) or multivisceral resection (19% vs. 6%, p = 0.0005), and were more likely attempted laparoscopically compared to robotically (76% vs. 51%, p < 0.001). Robotic approach was independently associated with reduced risk of conversion (OR 0.40, 95% CI 0.23–0.69), while male gender (OR 1.70, 95% CI 1.02–2.84), history of dyspnea (OR 3.85, 95% CI 1.49–9.96), vascular resection (OR 4.32, 95% CI 2.53–7.37), and multivisceral resection (OR 2.18, 95% CI 1.05–4.52) were associated with increased risk. Major complications were more common in converted patients (68% vs. 37%, p < 0.001). Converted patients had increased odds of non-home discharge (OR 3.25, 95% CI 1.06–9.97) and an associated increased length of stay of 3 days (95% CI 0.1–6.7).

Conclusion

Patients with a history of dyspnea or tumors requiring vascular or multivisceral resection were at increased risk of conversion, and the robotic platform was associated with a lower rate of conversion. Conversion was independently associated with increased overall complications, increased length of stay, and non-home discharge.

Keywords

Minimally invasive Converted Pancreaticoduodenectomy Predictors Outcomes 

Notes

Acknowledgements

There was no additional help in the writing of this manuscript.

Compliance with ethical standards

Disclosures

Caitlin A. Hester, Ibrahim Nassour, Alana Christie, Mathew Augustine, John C. Mansour, Patricio M. Polanco, Matthew R. Porembka, Thomas H. Shoultz, Sam C. Wang, Adam C. Yopp, Herbert J. Zeh III, Rebecca M. Minter have no conflicts of interest or financial ties to disclose.

References

  1. 1.
    Gagner M, Pomp A (1994) Laparoscopic pylorus-preserving pancreatoduodenectomy. Surg Endosc 8:408–410PubMedGoogle Scholar
  2. 2.
    Melvin WS, Needleman BJ, Krause KR, Ellison EC (2003) Robotic resection of pancreatic neuroendocrine tumor. J Laparoendosc Adv Surg Tech A 13:33–36PubMedGoogle Scholar
  3. 3.
    Giulianotti PC, Coratti A, Angelini M et al (2003) Robotics in general surgery: personal experience in a large community hospital. Arch Surg 138:777–784PubMedGoogle Scholar
  4. 4.
    Zeh HJ, Zureikat AH, Secrest A, Dauoudi M, Bartlett D, Moser AJ (2012) Outcomes after robot-assisted pancreaticoduodenectomy for periampullary lesions. Ann Surg Oncol 19:864–870PubMedGoogle Scholar
  5. 5.
    Zhang J, Wu WM, You L, Zhao YP (2013) Robotic versus open pancreatectomy: a systematic review and meta-analysis. Ann Surg Oncol 20:1774–1780PubMedGoogle Scholar
  6. 6.
    Liao CH, Wu YT, Liu YY et al (2016) Systemic review of the feasibility and advantage of minimally invasive pancreaticoduodenectomy. World J Surg 40:1218–1225PubMedGoogle Scholar
  7. 7.
    Zenoni SA, Arnoletti JP, de la Fuente SG (2013) Recent developments in surgery: minimally invasive approaches for patients requiring pancreaticoduodenectomy. JAMA Surg 148:1154–1157PubMedGoogle Scholar
  8. 8.
    Lai EC, Yang GP, Tang CN (2012) Robot-assisted laparoscopic pancreaticoduodenectomy versus open pancreaticoduodenectomy–a comparative study. Int J Surg 10:475–479PubMedGoogle Scholar
  9. 9.
    Kuroki T, Adachi T, Okamoto T, Kanematsu T (2012) A non-randomized comparative study of laparoscopy-assisted pancreaticoduodenectomy and open pancreaticoduodenectomy. Hepatogastroenterology 59:570–573PubMedGoogle Scholar
  10. 10.
    Chalikonda S, Aguilar-Saavedra JR, Walsh RM (2012) Laparoscopic robotic-assisted pancreaticoduodenectomy: a case-matched comparison with open resection. Surg Endosc 26:2397–2402PubMedPubMedCentralGoogle Scholar
  11. 11.
    Asbun HJ, Stauffer JA (2012) Laparoscopic vs open pancreaticoduodenectomy: overall outcomes and severity of complications using the Accordion Severity Grading System. J Am Coll Surg 215:810–819PubMedPubMedCentralGoogle Scholar
  12. 12.
    Zureikat AH, Breaux JA, Steel JL, Hughes SJ (2011) Can laparoscopic pancreaticoduodenectomy be safely implemented? J Gastrointest Surg 15:1151–1157PubMedGoogle Scholar
  13. 13.
    Buchs NC, Addeo P, Bianco FM, Ayloo S, Benedetti E, Giulianotti PC (2011) Robotic versus open pancreaticoduodenectomy: a comparative study at a single institution. World J Surg 35:2739–2746PubMedGoogle Scholar
  14. 14.
    Chen S, Chen JZ, Zhan Q et al (2015) Robot-assisted laparoscopic versus open pancreaticoduodenectomy: a prospective, matched, mid-term follow-up study. Surg Endosc 29:3698–3711PubMedGoogle Scholar
  15. 15.
    Zhou NX, Chen JZ, Liu Q et al (2011) Outcomes of pancreatoduodenectomy with robotic surgery versus open surgery. Int J Med Robot 7:131–137PubMedGoogle Scholar
  16. 16.
    Nassour I, Wang SC, Christie A et al (2018) Minimally invasive versus open pancreaticoduodenectomy: a propensity-matched study from a national cohort of patients. Ann Surg 268:151–157PubMedGoogle Scholar
  17. 17.
    Palanivelu C, Senthilnathan P, Sabnis SC et al (2017) Randomized clinical trial of laparoscopic versus open pancreatoduodenectomy for periampullary tumours. Br J Surg 104:1443–1450PubMedGoogle Scholar
  18. 18.
    Lei P, Wei B, Guo W, Wei H (2014) Minimally invasive surgical approach compared with open pancreaticoduodenectomy: a systematic review and meta-analysis on the feasibility and safety. Surg Laparosc Endosc Percutan Tech 24:296–305PubMedGoogle Scholar
  19. 19.
    Doula C, Kostakis ID, Damaskos C et al (2016) Comparison between minimally invasive and open pancreaticoduodenectomy: a systematic review. Surg Laparosc Endosc Percutan Tech 26:6–16PubMedGoogle Scholar
  20. 20.
    Correa-Gallego C, Dinkelspiel HE, Sulimanoff I et al (2014) Minimally-invasive vs open pancreaticoduodenectomy: systematic review and meta-analysis. J Am Coll Surg 218:129–139PubMedGoogle Scholar
  21. 21.
    Speicher PJ, Nussbaum DP, White RR et al (2014) Defining the learning curve for team-based laparoscopic pancreaticoduodenectomy. Ann Surg Oncol 21:4014–4019PubMedGoogle Scholar
  22. 22.
    Langan RC, Graham JA, Chin AB et al (2014) Laparoscopic-assisted versus open pancreaticoduodenectomy: early favorable physical quality-of-life measures. Surgery 156:379–384PubMedGoogle Scholar
  23. 23.
    Bao PQ, Mazirka PO, Watkins KT (2014) Retrospective comparison of robot-assisted minimally invasive versus open pancreaticoduodenectomy for periampullary neoplasms. J Gastrointest Surg 18:682–689PubMedGoogle Scholar
  24. 24.
    Mesleh MG, Stauffer JA, Bowers SP, Asbun HJ (2013) Cost analysis of open and laparoscopic pancreaticoduodenectomy: a single institution comparison. Surg Endosc 27:4518–4523PubMedGoogle Scholar
  25. 25.
    Cho A, Yamamoto H, Nagata M et al (2009) Comparison of laparoscopy-assisted and open pylorus-preserving pancreaticoduodenectomy for periampullary disease. Am J Surg 198:445–449PubMedGoogle Scholar
  26. 26.
    Pugliese R, Scandroglio I, Sansonna F et al (2008) Laparoscopic pancreaticoduodenectomy: a retrospective review of 19 cases. Surg Laparosc Endosc Percutan Tech 18:13–18PubMedGoogle Scholar
  27. 27.
    Gumbs AA, Gres P, Madureira FA, Gayet B (2008) Laparoscopic vs. open resection of noninvasive intraductal pancreatic mucinous neoplasms. J Gastrointest Surg 12:707–712PubMedGoogle Scholar
  28. 28.
    Stiles ZE, Dickson PV, Deneve JL et al (2018) The impact of unplanned conversion to an open procedure during minimally invasive pancreatectomy. J Surg Res 227:168–177PubMedGoogle Scholar
  29. 29.
    Nassour I, Wang SC, Porembka MR et al (2017) Conversion of minimally invasive distal pancreatectomy: predictors and outcomes. Ann Surg Oncol 24:3725–3731PubMedGoogle Scholar
  30. 30.
    Improvement ACoSNSQ. User Guide for the 2015 ACS NSQIP Procedure Targeted PUF ProgramGoogle Scholar
  31. 31.
    Schmidt CM, Turrini O, Parikh P et al (2010) Effect of hospital volume, surgeon experience, and surgeon volume on patient outcomes after pancreaticoduodenectomy: a single-institution experience. Arch Surg 145:634–640PubMedGoogle Scholar
  32. 32.
    Menon VG, Puri VC, Annamalai AA, Tuli R, Nissen NN (2013) Outcomes of vascular resection in pancreaticoduodenectomy: single-surgeon experience. Am Surg 79:1064–1067PubMedGoogle Scholar
  33. 33.
    Croome KP, Farnell MB, Que FG et al (2015) Pancreaticoduodenectomy with major vascular resection: a comparison of laparoscopic versus open approaches. J Gastrointest Surg 19:189–194 discussion 94 PubMedGoogle Scholar
  34. 34.
    Raoof M, Nota C, Melstrom LG et al (2018) Oncologic outcomes after robot-assisted versus laparoscopic distal pancreatectomy: analysis of the National Cancer Database. J Surg Oncol 118:651–656PubMedPubMedCentralGoogle Scholar
  35. 35.
    Zureikat AH, Borrebach J, Pitt HA et al (2017) Minimally invasive hepatopancreatobiliary surgery in North America: an ACS-NSQIP analysis of predictors of conversion for laparoscopic and robotic pancreatectomy and hepatectomy. HPB (Oxford) 19:595–602Google Scholar
  36. 36.
    King JC, Zeh HJ 3rd, Zureikat AH et al (2016) Safety in numbers: progressive implementation of a robotics program in an academic surgical oncology practice. Surg Innov 23:407–414PubMedGoogle Scholar
  37. 37.
    Nassour I, Wang SC, Porembka MR et al (2017) Robotic versus laparoscopic pancreaticoduodenectomy: a NSQIP analysis. J Gastrointest Surg 21:1784–1792PubMedPubMedCentralGoogle Scholar
  38. 38.
    Becker C, Plymale MA, Wennergren J, Totten C, Stigall K, Roth JS (2017) Compliance of the abdominal wall during laparoscopic insufflation. Surg Endosc 31:1947–1951PubMedGoogle Scholar
  39. 39.
    Bardoczky GI, Engelman E, Levarlet M, Simon P (1993) Ventilatory effects of pneumoperitoneum monitored with continuous spirometry. Anaesthesia 48:309–311PubMedGoogle Scholar
  40. 40.
    Beane JD, Pitt HA, Dolejs SC, Hogg ME, Zeh HJ, Zureikat AH (2018) Assessing the impact of conversion on outcomes of minimally invasive distal pancreatectomy and pancreatoduodenectomy. HPB (Oxford) 20:356–363Google Scholar
  41. 41.
    Kuss O, Blettner M, Borgermann J (2016) Propensity score: an alternative method of analyzing treatment effects. Dtsch Arztebl Int 113:597–603PubMedPubMedCentralGoogle Scholar
  42. 42.
    de Rooij T, van Hilst J, Boerma D et al (2016) Impact of a nationwide training program in minimally invasive distal pancreatectomy (LAELAPS). Ann Surg 264:754–762PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Caitlin A. Hester
    • 1
  • Ibrahim Nassour
    • 1
  • Alana Christie
    • 2
  • Mathew M. Augustine
    • 1
  • John C. Mansour
    • 1
  • Patricio M. Polanco
    • 1
    • 3
  • Matthew R. Porembka
    • 1
  • Thomas H. Shoultz
    • 4
  • Sam C. Wang
    • 1
  • Adam C. Yopp
    • 1
  • Herbert J. ZehIII
    • 1
  • Rebecca M. Minter
    • 5
    Email author
  1. 1.Division of Surgical OncologyUniversity of Texas Southwestern Medical CenterDallasUSA
  2. 2.Department of Clinical SciencesUniversity of Texas Southwestern Medical CenterDallasUSA
  3. 3.Department of Veterans AffairsVA North Texas Health Care SystemDallasUSA
  4. 4.Division of General and Acute Care SurgeryUniversity of Texas Southwestern Medical CenterDallasUSA
  5. 5.Department of Surgery, Division of Surgical OncologyUniversity of Wisconsin School of MedicineMadisonUSA

Personalised recommendations