Advertisement

Surgical Endoscopy

, Volume 33, Issue 2, pp 620–632 | Cite as

Fluorescence lymphangiography-guided full-thickness oncologic gastric resection

  • Seong-Ho Kong
  • Francesco Marchegiani
  • Renato Soares
  • Yu-yin Liu
  • Yun-Suhk Suh
  • Hyuk-Joon Lee
  • Bernard Dallemagne
  • Han-Kwang Yang
  • Jacques Marescaux
  • Michele DianaEmail author
Dynamic Manuscript

Abstract

Background

We aimed to assess the feasibility of a novel hybrid endoscopic/laparoscopic non-exposed, full-thickness, single-wall gastric resection technique guided by a fluorescence lymphangiography to identify the lymphatic pathway and the sentinel node basin.

Methods

Eight large white pigs (4 acute and 4 survival models) were included. Indocyanine green was injected submucosally around a pseudo-tumor at four points (1 ml, 0.1 mg/ml). The lymphatic spreading pathway was identified by the means of near-infrared (NIR) laparoscopic camera, and the resection line was planned outside of the fluorescent signals, to include all the potential lymphatic channels. Lymph node (LN) dissection was performed at greater curvature side and the infrapyloric area preserving the infragastric artery for all pigs. At the lesser curvature, 3–4 branches of the gastric artery were preserved in all acute and in two survival (group A), while in the remaining animals, 1–2 branches were preserved (group B). Perfusion of the remaining stomach was examined by NIR angiography. The gastric motility and function were evaluated by the means of a dynamic MRI immediately after the procedure and repeated after 1 week in surviving animals.

Results

The hybrid full-thickness resection with bilateral sentinel LN basin dissection were successfully performed with no intra-operative or post-operative complications. The removed specimen was including all the area with florescent signal. The remaining stomach demonstrated a good perfusion at the NIR angiography. The dynamic MRI revealed a preserved emptying function in the acute animals and in the group A, and a loss of function in the group B.

Conclusions

Fluorescence-lymphangiography guided hybrid resection was feasible to remove a relatively large part of the stomach including the lymphatic spreading pathway and sentinel basin. The extent of dissection in the lesser curvature side can affect the post-operative function and further researches are warranted to optimize the concept.

Keywords

Near-infrared fluorescence guided surgery Full-thickness resection Sentinel node navigation surgery Image guided surgery Dynamic MRI Capillary lactate test 

Notes

Acknowledgements

This study was supported by an IHU-Strasbourg feasibility Grant (PI: Pr. Seong-Ho Kong) and by the ELIOS (Endoscopic Luminescent Imaging for precision Oncologic Surgery) project grant. Michele Diana is the recipient of the ELIOS project grant from the ARC foundation for Cancer Research, aiming at the development of fluorescence-guided surgery.

Compliance with ethical standards

Disclosures

Jacques Marescaux is the President of both IRCAD and IHU-Strasbourg Institutes, which are partly funded by Karl Storz, Medtronic and Siemens. Authors Seong-Ho Kong, Francesco Marchegiani, Renato Soares, Yu-Yin Liu, Yun-Suhk Suh, Hyuk-Joon Lee, Dallemagne B, Han-Kwang Yang and Michele Diana have no conflicts of interest or financial ties to disclose.

Supplementary material

Supplementary material 1 (WMV 90526 KB)

Supplementary material 2 (WMV 19442 KB)

References

  1. 1.
    Maruyama K, Sasako M, Kinoshita T, Sano T, Katai H (1999) Can sentinel node biopsy indicate rational extent of lymphadenectomy in gastric cancer surgery? Fundamental and new information on lymph-node dissection. Langenbeck’s Arch Surg 384:149–157CrossRefGoogle Scholar
  2. 2.
    Ahn HS, Lee HJ, Hahn S, Kim WH, Lee KU, Sano T, Edge SB, Yang HK (2010) Evaluation of the seventh American Joint Committee on Cancer/International Union Against Cancer Classification of gastric adenocarcinoma in comparison with the sixth classification. Cancer 116:5592–5598CrossRefPubMedGoogle Scholar
  3. 3.
    Kitagawa Y, Takeuchi H, Takagi Y, Natsugoe S, Terashima M, Murakami N, Fujimura T, Tsujimoto H, Hayashi H, Yoshimizu N, Takagane A, Mohri Y, Nabeshima K, Uenosono Y, Kinami S, Sakamoto J, Morita S, Aikou T, Miwa K, Kitajima M (2013) Sentinel node mapping for gastric cancer: a prospective multicenter trial in Japan. J Clin Oncol 31:3704–3710CrossRefPubMedGoogle Scholar
  4. 4.
    Hiki N, Nunobe S, Matsuda T, Hirasawa T, Yamamoto Y, Yamaguchi T (2015) Laparoscopic endoscopic cooperative surgery. Dig Endosc 27:197–204CrossRefPubMedGoogle Scholar
  5. 5.
    Gotoda T, Yanagisawa A, Sasako M, Ono H, Nakanishi Y, Shimoda T, Kato Y (2000) Incidence of lymph node metastasis from early gastric cancer: estimation with a large number of cases at two large centers. Gastric Cancer 3:219–225CrossRefPubMedGoogle Scholar
  6. 6.
    Oh SY, Lee KG, Suh YS, Kim MA, Kong SH, Lee HJ, Kim WH, Yang HK (2017) Lymph node metastasis in mucosal gastric cancer: reappraisal of expanded indication of endoscopic submucosal dissection. Ann Surg 265:137–142CrossRefPubMedGoogle Scholar
  7. 7.
    Fujimura T, Fushida S, Tsukada T, Kinoshita J, Oyama K, Miyashita T, Takamura H, Kinami S, Ohta T (2015) A new stage of sentinel node navigation surgery in early gastric cancer. Gastric Cancer 18:210–217CrossRefPubMedGoogle Scholar
  8. 8.
    Goto O, Takeuchi H, Sasaki M, Kawakubo H, Akimoto T, Fujimoto A, Ochiai Y, Maehata T, Nishizawa T, Kitagawa Y, Yahagi N (2016) Laparoscopy-assisted endoscopic full-thickness resection of gastric subepithelial tumors using a nonexposure technique. Endoscopy 48:1010–1015CrossRefPubMedGoogle Scholar
  9. 9.
    Kong SH, Noh YW, Suh YS, Park HS, Lee HJ, Kang KW, Kim HC, Lim YT, Yang HK (2015) Evaluation of the novel near-infrared fluorescence tracers pullulan polymer nanogel and indocyanine green/gamma-glutamic acid complex for sentinel lymph node navigation surgery in large animal models. Gastric Cancer 18:55–64CrossRefPubMedGoogle Scholar
  10. 10.
    Lee JH, Lee MS, Kim HH, Park DJ, Lee KH, Hwang JY, Lee HJ, Yang HK, Lee KU (2011) Feasibility of laparoscopic partial gastrectomy with sentinel node basin dissection in a porcine model. Surg Endosc 25:1070–1075CrossRefPubMedGoogle Scholar
  11. 11.
    Nunobe S, Hiki N, Fukunaga T, Tokunaga M, Ohyama S, Seto Y, Yamaguchi T (2007) Laparoscopy-assisted pylorus-preserving gastrectomy: preservation of vagus nerve and infrapyloric blood flow induces less stasis. World J Surg 31:2335–2340CrossRefPubMedGoogle Scholar
  12. 12.
    Kong SH, Diana M, Liu YY, Lee HJ, Legner A, Soares R, Swanstrom L, Dallemagne B, Yang HK, Marescaux J (2016) Novel method for hybrid endo-laparoscopic full-thickness gastric resection using laparoscopic transgastric suture passer device. Surg Endosc 30:1683–1691CrossRefPubMedGoogle Scholar
  13. 13.
    Diana M, Noll E, Diemunsch P, Dallemagne B, Benahmed MA, Agnus V, Soler L, Barry B, Namer IJ, Demartines N, Charles AL, Geny B, Marescaux J (2014) Enhanced-reality video fluorescence: a real-time assessment of intestinal viability. Ann Surg 259:700–707CrossRefPubMedGoogle Scholar
  14. 14.
    Diana M, Noll E, Diemunsch P, Moussallieh FM, Namer IJ, Charles AL, Lindner V, Agnus V, Geny B, Marescaux J (2015) Metabolism-guided bowel resection: potential role and accuracy of instant capillary lactates to identify the optimal resection site. Surg Innov 22:453–461CrossRefPubMedGoogle Scholar
  15. 15.
    Diana M, Halvax P, Pop R, Schlagowski I, Bour G, Liu YY, Legner A, Diemunsch P, Geny B, Dallemagne B, Beaujeux R, Demartines N, Marescaux J (2015) Gastric supply manipulation to modulate ghrelin production and enhance vascularization to the cardia: proof of the concept in a porcine model. Surg Innov 22:5–14CrossRefPubMedGoogle Scholar
  16. 16.
    Diana M, Dallemagne B, Chung H, Nagao Y, Halvax P, Agnus V, Soler L, Lindner V, Demartines N, Diemunsch P, Geny B, Swanstrom L, Marescaux J (2014) Probe-based confocal laser endomicroscopy and fluorescence-based enhanced reality for real-time assessment of intestinal microcirculation in a porcine model of sigmoid ischemia. Surg Endosc 28:3224–3233CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Diana M, Halvax P, Dallemagne B, Nagao Y, Diemunsch P, Charles AL, Agnus V, Soler L, Demartines N, Lindner V, Geny B, Marescaux J (2014) Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery. Surg Endosc 28:3108–3118CrossRefGoogle Scholar
  18. 18.
    Diana M, Pop R, Beaujeux R, Dallemagne B, Halvax P, Schlagowski I, Liu YY, Diemunsch P, Geny B, Lindner V, Marescaux J (2015) Embolization of arterial gastric supply in obesity (EMBARGO): an endovascular approach in the management of morbid obesity. Proof of the concept in the porcine model. Obes Surg 25:550–558CrossRefGoogle Scholar
  19. 19.
    Mocellin S, Nitti D (2015) Lymphadenectomy extent and survival of patients with gastric carcinoma: a systematic review and meta-analysis of time-to-event data from randomized trials. Cancer Treat Rev 41:448–454CrossRefPubMedGoogle Scholar
  20. 20.
    Kong SH, Lee HJ, Ahn HS, Kim JW, Kim WH, Lee KU, Yang HK (2012) Stage migration effect on survival in gastric cancer surgery with extended lymphadenectomy: the reappraisal of positive lymph node ratio as a proper N-staging. Ann Surg 255:50–58CrossRefPubMedGoogle Scholar
  21. 21.
    Association JGC (2017) Japanese gastric cancer treatment guidelines 2014 (ver. 4). Gastric Cancer 20:1–19CrossRefGoogle Scholar
  22. 22.
    Suh YS, Han DS, Kong SH, Kwon S, Shin CI, Kim WH, Kim HH, Lee HJ, Yang HK (2014) Laparoscopy-assisted pylorus-preserving gastrectomy is better than laparoscopy-assisted distal gastrectomy for middle-third early gastric cancer. Ann Surg 259:485–493CrossRefPubMedGoogle Scholar
  23. 23.
    Yoshida M, Kubota K, Kuroda J, Ohta K, Nakamura T, Saito J, Kobayashi M, Sato T, Beck Y, Kitagawa Y, Kitajima M (2012) Indocyanine green injection for detecting sentinel nodes using color fluorescence camera in the laparoscopy-assisted gastrectomy. J Gastroenterol Hepatol 27(Suppl 3):29–33CrossRefPubMedGoogle Scholar
  24. 24.
    Park JW, Sohn DK, Hong CW, Han KS, Choi DH, Chang HJ, Lim SB, Choi HS, Jeong SY (2008) The usefulness of preoperative colonoscopic tattooing using a saline test injection method with prepackaged sterile India ink for localization in laparoscopic colorectal surgery. Surg Endosc 22:501–505CrossRefGoogle Scholar
  25. 25.
    Han TS, Kong SH, Lee HJ, Ahn HS, Hur K, Yu J, Kim WH, Yang HK (2011) Dissemination of free cancer cells from the gastric lumen and from perigastric lymphovascular pedicles during radical gastric cancer surgery. Ann Surg Oncol 18:2818–2825CrossRefPubMedGoogle Scholar
  26. 26.
    Inoue H, Ikeda H, Hosoya T, Yoshida A, Onimaru M, Suzuki M, Kudo SE (2012) Endoscopic mucosal resection, endoscopic submucosal dissection, and beyond: full-layer resection for gastric cancer with nonexposure technique (CLEAN-NET). Surg Oncol Clin N Am 21:129–140CrossRefPubMedGoogle Scholar
  27. 27.
    Goto O, Takeuchi H, Kawakubo H, Matsuda S, Kato F, Sasaki M, Fujimoto A, Ochiai Y, Horii J, Uraoka T, Kitagawa Y, Yahagi N (2015) Feasibility of non-exposed endoscopic wall-inversion surgery with sentinel node basin dissection as a new surgical method for early gastric cancer: a porcine survival study. Gastric Cancer 18:440–445CrossRefPubMedGoogle Scholar
  28. 28.
    Lee JH, Lee HJ, Kong SH, Park do J, Lee HS, Kim WH, Kim HH, Yang HK (2014) Analysis of the lymphatic stream to predict sentinel nodes in gastric cancer patients. Ann Surg Oncol 21:1090–1098CrossRefPubMedGoogle Scholar
  29. 29.
    Huang B, Wang Z, Sun Z, Zhao B, Xu H (2011) A novel insight of sentinel lymph node concept based on 1–3 positive nodes in patients with pT1-2 gastric cancer. BMC Cancer 11:18CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Liu CG, Lu P, Lu Y, Jin F, Xu HM, Wang SB, Chen JQ (2007) Distribution of solitary lymph nodes in primary gastric cancer: a retrospective study and clinical implications. World J Gastroenterol 13:4776–4780CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sherwinter DA, Gallagher J, Donkar T (2013) Intra-operative transanal near infrared imaging of colorectal anastomotic perfusion: a feasibility study. Colorectal Dis 15:91–96CrossRefPubMedGoogle Scholar
  32. 32.
    Degett TH, Andersen HS, Gogenur I (2016) Indocyanine green fluorescence angiography for intraoperative assessment of gastrointestinal anastomotic perfusion: a systematic review of clinical trials. Langenbeck’s Arch Surg 401:767–775CrossRefGoogle Scholar
  33. 33.
    Diana M, Agnus V, Halvax P, Liu YY, Dallemagne B, Schlagowski AI, Geny B, Diemunsch P, Lindner V, Marescaux J (2015) Intraoperative fluorescence-based enhanced reality laparoscopic real-time imaging to assess bowel perfusion at the anastomotic site in an experimental model. Br J Surg 102:e169–e176CrossRefPubMedGoogle Scholar
  34. 34.
    Baba S, Sasaki A, Nakajima J, Obuchi T, Koeda K, Wakabayashi G (2009) Assessment of gastric motor function by cine magnetic resonance imaging. J Gastroenterol Hepatol 24:1401–1406CrossRefPubMedGoogle Scholar
  35. 35.
    Ajaj W, Lauenstein T, Papanikolaou N, Holtmann G, Goehde SC, Ruehm SG, Debatin JF (2004) Real-time high-resolution MRI for the assessment of gastric motility: pre- and postpharmacological stimuli. J Magn Reson Imaging 19:453–458CrossRefPubMedGoogle Scholar
  36. 36.
    Curcic J, Sauter M, Schwizer W, Fried M, Boesiger P, Steingoetter A (2015) Validation of a golden angle radial sequence (GOLD) for abdominal T1 mapping during free breathing: demonstrating clinical feasibility for quantifying gastric secretion and emptying. J Magn Reson Imaging 41:157–164CrossRefPubMedGoogle Scholar
  37. 37.
    Arthurs OJ, Graves MJ, Edwards AD, Joubert I, Set PA, Lomas DJ (2014) Interactive neonatal gastrointestinal magnetic resonance imaging using fruit juice as an oral contrast media. BMC Med Imaging 14:33CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhang S, Olthoff A, Frahm J (2012) Real-time magnetic resonance imaging of normal swallowing. J Magn Reson Imaging 35:1372–1379CrossRefPubMedGoogle Scholar
  39. 39.
    Kwiatek MA, Fox MR, Steingoetter A, Menne D, Pal A, Fruehauf H, Kaufman E, Forras-Kaufman Z, Brasseur JG, Goetze O, Hebbard GS, Boesiger P, Thumshirn M, Fried M, Schwizer W (2009) Effects of clonidine and sumatriptan on postprandial gastric volume response, antral contraction waves and emptying: an MRI study. Neurogastroenterol Motil 21:928–971CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Seong-Ho Kong
    • 1
    • 2
  • Francesco Marchegiani
    • 1
  • Renato Soares
    • 1
  • Yu-yin Liu
    • 3
    • 4
  • Yun-Suhk Suh
    • 2
  • Hyuk-Joon Lee
    • 2
    • 5
  • Bernard Dallemagne
    • 3
  • Han-Kwang Yang
    • 2
    • 5
  • Jacques Marescaux
    • 1
    • 3
  • Michele Diana
    • 1
    • 3
    Email author
  1. 1.IHU Strasbourg, Institute of Image-Guided SurgeryStrasbourgFrance
  2. 2.Department of SurgerySeoul National University HospitalSeoulSouth Korea
  3. 3.IRCAD, Research Institute against Cancer of the Digestive SystemStrasbourgFrance
  4. 4.Department of General SurgeryChang Gung Memorial Hospital, Linkou, Chang Gung UniversityTaoyuanTaiwan
  5. 5.Cancer Research InstituteSeoul National University HospitalSeoulSouth Korea

Personalised recommendations