Surgical Endoscopy

, Volume 33, Issue 1, pp 252–260 | Cite as

A multifaceted individualized pneumoperitoneum strategy for laparoscopic colorectal surgery: a multicenter observational feasibility study

  • Oscar Diaz-CambroneroEmail author
  • Blas Flor Lorente
  • Guido Mazzinari
  • Maria Vila Montañes
  • Nuria García Gregorio
  • Daniel Robles Hernandez
  • Luis Enrique Olmedilla Arnal
  • Maria Pilar Argente Navarro
  • Marcus J. Schultz
  • Carlos L. Errando
  • for the IPPColLapSe study group



While guidelines for laparoscopic abdominal surgery advise using the lowest possible intra-abdominal pressure, commonly a standard pressure is used. We evaluated the feasibility of a predefined multifaceted individualized pneumoperitoneum strategy aiming at the lowest possible intra-abdominal pressure during laparoscopic colorectal surgery.


Multicenter prospective study in patients scheduled for laparoscopic colorectal surgery. The strategy consisted of ventilation with low tidal volume, a modified lithotomy position, deep neuromuscular blockade, pre-stretching of the abdominal wall, and individualized intra-abdominal pressure titration; the effect was blindly evaluated by the surgeon. The primary endpoint was the proportion of surgical procedures completed at each individualized intra-abdominal pressure level. Secondary endpoints were the respiratory system driving pressure, and the estimated volume of insufflated CO2 gas needed to perform the surgical procedure.


Ninety-two patients were enrolled in the study. Fourteen cases were converted to open surgery for reasons not related to the strategy. The intervention was feasible in all patients and well-accepted by all surgeons. In 61 out of 78 patients (78%), surgery was performed and completed at the lowest possible IAP, 8 mmHg. In 17 patients, IAP was raised up to 12 mmHg. The relationship between IAP and driving pressure was almost linear. The mean estimated intra-abdominal CO2 volume at which surgery was performed was 3.2 L.


A multifaceted individualized pneumoperitoneum strategy during laparoscopic colorectal surgery was feasible and resulted in an adequate working space in most patients at lower intra-abdominal pressure and lower respiratory driving pressure. (Trial Identifier: NCT03000465).


Laparoscopy Colorectal surgery Neuromuscular blockade 



We acknowledge the support of surgery, anesthesia, and administrative staff at the Hospital Universitario y Politecnico La Fe in Valencia, the Hospital General de Castellon in Castellon, and the Hospital Universitario Gregorio Marañon in Madrid, Spain, during this study and a special mention to David Hervás from Data Science and Biostatistics IISLaFe for the assistance with the data analysis.

IPPColLapSe study collaborators group members: Salvador Pous Ph.D. (, Cristina Ballester Ph.D. (, Matteo Frasson Ph.D. (, Alvaro García-Granero Ph.D. (, Carlos Cerdán Santacruz M.D. (, Eduardo García-Granero Ph.D. (, Luis Sanchez Guillen M.D. (, Anabel Marqués Marí Ph.D. (, David Casado Rodrigo M.D. (, Joan Gibert Gerez M.D. (, Rebeca Cosa Rodríguez M.D. (, Mª de los Desamparados Moya Sanz M.D. (, Marcos Rodriguez Martín M.D. (, Jaime Zorrilla Ortúzar M.D. (, José María Pérez-Peña M.D. (, Maria Jose Alberola Estellés M.D. (, Begoña Ayas Montero Ph.D. (, Salome Matoses Jaen M.D. (, Sandra Verdeguer Ph.D. (, Michiel. Warlé M.D. (, David Cuesta Frau Ph.D. (

Author contributions

O.D.C: Study design, acquisition, analysis and interpretation of data, drafting and revision of paper. B.F.L: Study design, acquisition, analysis and interpretation of data, drafting and revision of paper. G.M: Study design, analysis and interpretation of data, drafting and revision of paper. M.V.M: Study design, acquisition and interpretation of data, and revision of paper. N.G.G: Study design, acquisition and interpretation of data, and revision of paper. D.R.H: Study design, acquisition and interpretation of data, and revision of paper. L.E.O.A: Study design, acquisition and interpretation of data, and revision of paper. M.P.A.N: Study design, interpretation of data, and revision of paper. M.J.S: Analysis and interpretation of data, drafting and revision of paper. C.L.E.O: Study design, analysis and interpretation of data, drafting and revision of paper.


Support was provided solely from institutional and/or departmental sources.

Compliance with Ethical Standards


Oscar Diaz-Cambronero ( has received speakers’ fees and honoraria from Merck Sharp & Dohme for lectures (approximately amount: 8.000 euros) and also received a research grant from Merck Sharp & Dohme of 80.000 euros not related to this study. Blas Flor Lorente ( has received speakers’ fees and honoraria from Merck Sharp & Dohme for lectures (approximately amount: 3.000 euros). Guido Mazzinari ( declares no competing interests. Maria Vila Montañes ( declares no competing interests. Nuria Garcia Gregorio ( declares no competing interests. Daniel Robles Hernandez ( declares no competing interests. Luis Enrique Olmedilla Arnal ( declares no competing interests. Maria Pilar Argente Navarro ( has received speakers’ fees and honoraria for lectures from Merck Sharp & Dohme (approximately amount: 1.000 euros). Marcus J. Schultz ( declares no competing interests. Carlos L. Errando ( has received speakers’ fees and honoraria for lectures from Merck Sharp & Dohme. (approximately amount: 1.000 euros).

Supplementary material

464_2018_6305_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1806 KB)


  1. 1.
    Neudecker J, Sauerland S, Neugebauer E, Bergamaschi R, Bonjer HJ, Cuschieri A, Fuchs KH, Jacobi Ch, Jansen FW, Koivusalo AM, Lacy A, McMahon MJ, Millat B, Schwenk W (2002) The European Association for Endoscopic Surgery clinical practice guideline on the pneumoperitoneum for laparoscopic surgery. Surg Endosc 16:1121–1143CrossRefGoogle Scholar
  2. 2.
    Hatipoglu S, Akbulut S, Hatipoglu F, Abdullayev R (2014) Effect of laparoscopic abdominal surgery on splanchnic circulation: Historical developments. World J Gastroenterol 20:18165–18176CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Gurusamy KS, Vaughan J, Davidson BR (2014) Low pressure versus standard pressure pneumoperitoneum in laparoscopic cholecystectomy. Cochrane Database of Syst Rev 3:CD006930Google Scholar
  4. 4.
    Brokelman WJ, Lensvelt M, Borel Rinkes IH, Klinkenbijl JH, Reijnen MM (2011) Peritoneal changes due to laparoscopic surgery. Surg Endosc 25:1–9CrossRefGoogle Scholar
  5. 5.
    Maddison L, Karjagin J, Tenhunen J, Starkopf J (2012) Moderate intra-abdominal hypertension is associated with an increased lactate-pyruvate ratio in the rectus abdominis muscle tissue: a pilot study during laparoscopic surgery. Ann Intensive Care 2(Suppl 1):S14CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Malbrain ML, Viaene D, Kortgen A, De Laet I, Dits H, Van Regenmortel N, Schoonheydt K, Bauer M (2012) Relationship between intra-abdominal pressure and indocyanine green plasma disappearance rate: hepatic perfusion may be impaired in critically ill patients with intra-abdominal hypertension. Ann Intensive Care 2(Suppl 1):S19CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Papparella A, Nino F, Coppola S, Noviello C, Paciello O, Papparella S (2013) Peritoneal morphological changes due to pneumoperitoneum: the effect of intra-abdominal pressure. Eur J Pediatr Surg 24:322–327CrossRefGoogle Scholar
  8. 8.
    Schwarte LA, Scheeren TW, Lorenz C, De Bruyne F, Fournell A (2004) Moderate increase in intraabdominal pressure attenuates gastric mucosal oxygen saturation in patients undergoing laparoscopy. Anesthesiology 100:1081–1087CrossRefGoogle Scholar
  9. 9.
    Procter LD, Davenport DL, Bernard AC, Zwischenberger JB (2010) General surgical operative duration is associated with increased risk-adjusted infectious complication rates and length of hospital stay. J Am Coll Surg 210:60-65CrossRefGoogle Scholar
  10. 10.
    Cheng H, Chen BP, Soleas IM, Ferko NC, Cameron CG, Hinoul P (2017) Prolonged operative duration increases risk of surgical site infections: a systematic review. Surg Infect 18:722–735CrossRefGoogle Scholar
  11. 11.
    Vlot J, Wijnen R, Stolker RJ, Bax K (2013) Optimizing working space in porcine laparoscopy: CT measurement of the effects of intra-abdominal pressure. Surg Endosc 27:1668–1673CrossRefGoogle Scholar
  12. 12.
    Madsen MV, Staehr-Rye AK, Gätke MR, Claudius C (2015) Neuromuscular blockade for optimising surgical conditions during abdominal and gynaecological surgery: a systematic review. Acta Anaesthesiol Scand 59:1–16CrossRefGoogle Scholar
  13. 13.
    Madsen MV, Staehr-Rye AK, Claudius C, Gätke MR (2016) Is deep neuromuscular blockade beneficial in laparoscopic surgery? Yes, probably. Acta Anaesthesiol Scand 60:710–716CrossRefGoogle Scholar
  14. 14.
    Kopman AF, Naguib M (2015) Laparoscopic surgery and muscle relaxants. Anesth Analg 120:51–58CrossRefGoogle Scholar
  15. 15.
    Kopman AF, Naguib M (2016) Is deep neuromuscular block beneficial in laparoscopic surgery? No, probably not. Acta Anaesthesiol Scand 60:717–722CrossRefGoogle Scholar
  16. 16.
    Bruintjes MH, van Helden EV, Braat AE, Dahan A, Scheffer GJ, van Laarhoven CJ, Warlé MC (2017) Deep neuromuscular block to optimize surgical space conditions during laparoscopic surgery: a systematic review and meta-analysis. Br J Anaesth 118:834–842CrossRefGoogle Scholar
  17. 17.
    Martini CH, Boon M, Bevers RF, Aarts LP, Dahan A (2014) Evaluation of surgical conditions during laparoscopic surgery in patients with moderate vs deep neuromuscular block. Br J Anaesth 112:498–505CrossRefGoogle Scholar
  18. 18.
    Özdemir-van Brunschot DMD, Braat AE, van der Jagt MFP, Scheffer GJ, Martini CH, Langenhuijsen JF, Dam RE, Huurman VA, Lam D, d’Ancona FC, Dahan A, Warle MC (2018) Deep neuromuscular blockade improves surgical conditions during low-pressure pneumoperitoneum laparoscopic donor nephrectomy. Surg Endosc 32:245–251CrossRefGoogle Scholar
  19. 19.
    Dubois PE, Putz L, Jamart J, Marotta ML, Gourdin M, Donnez O (2014) Deep neuromuscular block improves surgical conditions during laparoscopic hysterectomy: a randomised controlled trial. Eur J Anaesthesiol 31:430–436CrossRefGoogle Scholar
  20. 20.
    Staehr-Rye AK, Rasmussen LS, Rosenberg J, Juul P, Lindekaer AL, Riber C, Gätke MR (2014) Surgical space conditions during low-pressure laparoscopic cholecystectomy with deep versus moderate neuromuscular blockade: a randomized clinical study. Anesth Analg 119:1084–1092CrossRefGoogle Scholar
  21. 21.
    Madsen MV, Gätke MR, Springborg HH, Rosenberg J, Lund J, Istre O (2015) Optimising abdominal space with deep neuromuscular blockade in gynaecologic laparoscopy—a randomised, blinded crossover study. Acta Anaesthesiol Scand 59:441–447CrossRefGoogle Scholar
  22. 22.
    Barrio J, Errando CL, San Miguel G, Salas BI, Raga J, Carrión JL, García-Ramón J, Gallego J (2016) Effect of depth of neuromuscular blockade on the abdominal space during pneumoperitoneum establishment in laparoscopic surgery. J Clin Anesth 34:197–203CrossRefGoogle Scholar
  23. 23.
    Rosenberg J, Herring WJ, Blobner M, Mulier JP, Rahe-Meyer N, Woo T, Li MK, Grobara P, Assaid CA, Fennema H Szegedi A (2017) Deep neuromuscular blockade improves laparoscopic surgical conditions: a randomized, controlled study. Adv Ther 34:925–936CrossRefGoogle Scholar
  24. 24.
    Barrio J, Errando CL, García-Ramón J, Sellés R, San Miguel G, Gallego J (2017) Influence of depth of neuromuscular blockade on surgical conditions during low-pressure pneumoperitoneum laparoscopic cholecystectomy: a randomized blinded study. J Clin Anesth 42:26–30CrossRefGoogle Scholar
  25. 25.
    Serpa Neto A, Hemmes SN, Barbas CS, Beiderlinden M, Biehl M, Binnekade JM, Canet J, Fernandez-Bustamante A, Futier E, Gajic O, Hedenstierna G, Hollmann MW, Jaber S, Kozian A, Licker M, Lin WQ, Maslow AD, Memtsoudis SG, Reis Miranda D, Moine P, Ng T, Paparella D, Putensen C, Ranieri M, Scavonetto F, Schilling T, Schmid W, Selmo G, Severgnini P, Sprung J, Sundar S, Talmor D, Treschan T, Unzueta C, Weingarten TN, Wolthuis EK, Wrigge H, Gama de Abreu M, Pelosi P, Schultz MJ, PROVE Network Investigators (2015) Protective versus conventional ventilation for surgery: a systematic review and individual patient data meta-analysis. Anesthesiology 123(1):66–78CrossRefGoogle Scholar
  26. 26.
    Mulier JP, Dillemans B, Van Cauwenberge S (2010) Impact of the patient’s body position on the intraabdominal workspace during laparoscopic surgery. Surg Endosc 24:1398–1402CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Vlot J, Wijnen R, Stolker RJ, Bax KN (2014) Optimizing working space in laparoscopy: CT measurement of the effect of pre-stretching of the abdominal wall in a porcine model. Surg Endosc 28:841–846CrossRefGoogle Scholar
  28. 28.
    Van Wijk RM, Watts RW, Ledowski T, Trochsler M, Moran JL, Arenas GW (2015) Deep neuromuscular block reduces intra-abdominal pressure requirements during laparoscopic cholecystectomy: a prospective observational study. Acta Anaesthesiol Scand 59:434–440CrossRefGoogle Scholar
  29. 29.
    Kim MH, Lee KY, Lee KY, Min BS, Yoo YC (2016) Maintaining optimal surgical conditions with low insufflation pressures is possible with deep neuromuscular blockade during laparoscopic colorectal surgery: a prospective, randomized, double-blind, parallel-group clinical trial. Medicine 95:e2920CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Serpa Neto A, Hemmes SN, Barbas CS, Beiderlinden M, Fernandez-Bustamante A, Futier E, Hollmann MW, Jaber S, Kozian A, Licker M, Lin WQ, Moine P, Scavonetto F, Schilling T, Selmo G, Severgnini P, Sprung J, Treschan T, Unzueta C, Weingarten TN, Wolthuis EK, Wrigge H, Gama de Abreu M, Pelosi P, Schultz MJ, PROVE Network investigators (2014) Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery: a systematic review and meta-analysis. Lancet Respir Med 2(12):1007–1015CrossRefGoogle Scholar
  31. 31.
    Cinnella G, Grasso S, Spadaro S, Rauseo M, Mirabella L, Salatto P, De Capraris A, Nappi L, Greco P, Dambrosio M (2013) Effects of recruitment maneuver and positive end-expiratory pressure on respiratory mechanics and transpulmonary pressure during laparoscopic surgery. Anesthesiology 118(1):114–122CrossRefGoogle Scholar
  32. 32.
    D’Antini D, Rauseo M, Grasso S, Mirabella L, Camporota L, Cotoia A, Spadaro S, Fersini A, Petta R, Menga R, Sciusco A, Dambrosio M, Cinnella G (2018) Physiological effects of the open lung approach during laparoscopic cholecystectomy: focus on driving pressure. Minerva Anestesiol 84(2):159–167Google Scholar
  33. 33.
    Regli A, De Keulenaer BL, Singh B, Hockings LE, Noffsinger B, van Heerden PV (2017) The respiratory pressure-abdominal volume curve in a porcine model. Intensive Care Med Exp 5:11CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Cortes-Puentes GA, Gard KE, Adams AB, Faltesek KA, Anderson CP, Dries DJ, Marini JJ (2013) Value and limitations of transpulmonary pressure calculations during intra-abdominal hypertension. Crit Care Med 41(8):1870–1877CrossRefGoogle Scholar
  35. 35.
    Mulier JP, Dillemans BRS, Crombach M, Missant C, Sels A (2009) On the abdominal pressure volume relationship. Internet J Anesthesiol 21:1Google Scholar
  36. 36.
    Malbrain ML, Peeters Y, Wise R (2016) The neglected role of abdominal compliance in organ-organ interactions. Crit Care 20(1):67CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Allaix ME, Furnée EJ, Mistrangelo M, Arezzo A, Morino M (2016 Oct) Conversion of laparoscopic colorectal resection for cancer: what is the impact on short-term outcomes and survival? World J Gastroenterol 22(37):8304–8313CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Oscar Diaz-Cambronero
    • 1
    Email author
  • Blas Flor Lorente
    • 2
  • Guido Mazzinari
    • 3
  • Maria Vila Montañes
    • 1
  • Nuria García Gregorio
    • 1
  • Daniel Robles Hernandez
    • 4
  • Luis Enrique Olmedilla Arnal
    • 5
  • Maria Pilar Argente Navarro
    • 1
  • Marcus J. Schultz
    • 6
    • 7
  • Carlos L. Errando
    • 8
  • for the IPPColLapSe study group
  1. 1.Department of Anesthesiology & Perioperative Medicine Research GroupHospital Universitario y Politécnico la Fe. Valencia EspañaValenciaSpain
  2. 2.Colorectal SurgeryHospital Universitario y Politecnico la FeValenciaSpain
  3. 3.Department of AnesthesiologyHospital de ManisesValenciaSpain
  4. 4.Department of AnesthesiologyHospital General Universitario de CastellonCastellón de la PlanaSpain
  5. 5.Department of AnesthesiologyHospital General Universitario Gregorio MarañonMadridSpain
  6. 6.Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A)Academic Medical CenterAmsterdamThe Netherlands
  7. 7.Mahidol-Oxford Tropical Medicine Research Unit (MORU)Mahidol UniversityBangkokThailand
  8. 8.Department of AnesthesiologyConsorcio Hospital General Universitario de ValenciaValenciaSpain

Personalised recommendations