Surgical Endoscopy

, Volume 32, Issue 11, pp 4393–4401 | Cite as

The impact of preoperative carbohydrate loading on intraoperative body temperature: a randomized controlled clinical trial

  • Hiroki HamamotoEmail author
  • Masashi Yamamoto
  • Shinsuke Masubuchi
  • Masatsugu Ishii
  • Wataru Osumi
  • Keitaro Tanaka
  • Junji Okuda
  • Kazuhisa Uchiyama



Preoperative carbohydrate loading (CHO) is one element of the enhanced recovery after surgery protocol. No clinical trial has investigated the impact of preoperative CHO on intraoperative body temperature.


This study was a single-center, prospective, randomized controlled clinical trial involving patients undergoing laparoscopic colon cancer surgery. The primary end point was the intraoperative core temperature during surgery, which was measured at 30-min intervals for 150 min after starting surgery. The secondary end points were short-term outcomes and body composition changes.


From July 2013 to May 2014, we randomized 70 patients into the control group (n = 33) or CHO group (n = 31); six patients were excluded. The core temperature of the CHO group 90, 120, and 150 min after starting surgery was significantly lower than that of the control group (control vs. CHO, respectively: 90 min; 36.26 ± 0.41 vs. 36.05 ± 0.43 °C, p = 0.0233, 120 min; 36.30 ± 0.44 vs. 36.06 ± 0.50 °C, p = 0.0283, 150 min; 36.33 ± 0.50 vs. 36.01 ± 0.56 °C, p = 0.0186). We also found a significant difference in body weight loss (control vs. CHO, respectively: − 1.6 ± 0.8 vs. − 0.9 ± 1.4 kg, p = 0.0304) and loss of lower limb muscle mass (− 0.7 ± 0.7 vs. − 0.3 ± 0.6 kg, p = 0.0110) between the control and CHO groups, respectively.


CHO had no effect on raising the intraoperative core temperature, and no negative impact on the perioperative outcome. CHO prevented the loss of lower limb muscle mass, which may lead to better postoperative recovery.


Enhanced recovery after surgery Preoperative carbohydrate loading Intraoperative core temperature Laparoscopic colon cancer surgery 


Compliance with ethical standards


Drs. Hiroki Hamamoto, Masashi Yamamoto, Shinsuke Masubuchi, Masatsugu Ishii, Wataru Osumi, Keitaro Tanaka, Junji Okuda, and Kazuhisa Uchiyama have no conflicts of interest or financial ties to disclose.


  1. 1.
    Kehlet H, Wilmore DW (2002) Multimodal strategies to improve surgical outcome. Am J Surg 183(6):630–641CrossRefGoogle Scholar
  2. 2.
    Kehlet H, Wilmore DW (2008) Evidence-based surgical care and the evolution of fast-track surgery. Ann Surg 248(2):189–198CrossRefGoogle Scholar
  3. 3.
    Kehlet H (2008) Fast-track colorectal surgery. Lancet 371:791–793CrossRefGoogle Scholar
  4. 4.
    King PM, Blazeby JM, Ewings P, Longman RJ, Kipling RM, Franks PJ, Sheffield JP, Evans LB, Soulsby M, Bulley SH, Kennedy RH (2005) The influence of an Enhanced Recovery Programme on clinical outcomes, costs and quality of life after surgery for colorectal cancer. Colorectal Dis 8(6):506–513CrossRefGoogle Scholar
  5. 5.
    Wind J, Polle SW, Fung Kon Jin PH, Dejong CH, von Meyenfeldt MF, Ubbink DT, Gouma DJ, Bemelman WA (2006) Systematic review of enhanced recovery programmes in colonic surgery. Br J Surg 93(7):800–809CrossRefGoogle Scholar
  6. 6.
    Varadhan KK, Neal KR, Dejong CH, Fearon KC, Ljungqvist O, Lobo DN (2010) The enhanced recovery after surgery (ERAS) pathway for patients undergoing major elective open colorectal surgery: a meta-analysis of randomized controlled trials. Clin Nutr 29(4):434–440CrossRefGoogle Scholar
  7. 7.
    Gustafsson UO, Scott MJ, Schwenk W, Demartines N, Roulin D, Francis N, McNaught CE, Macfie J, Liberman AS, Soop M, Hill A, Kennedy RH, Lobo DN, Fearon K, Ljungqvist O (2013) Guidelines for perioperative care in elective colonic surgery: enhanced recovery after surgery (ERAS®) society recommendations. World J Surg 37(2):259–284CrossRefGoogle Scholar
  8. 8.
    Teeuwen PH, Bleichrodt RP, Strik C, Groenewoud JJ, Brinkert W, van Laarhoven CJ, van Goor H, Bremers AJ (2010) Enhanced recovery after surgery (ERAS) versus conventional postoperative care in colorectal surgery. J Gastrointest Surg 14(1):88–95CrossRefGoogle Scholar
  9. 9.
    Gustafsson UO, Hausel J, Thorell A, Ljungqvist O, Soop M, Nygren J (2011) Adherence to the enhanced recovery after surgery protocol and outcomes after colorectal cancer surgery. Arch Surg 146(5):571–577CrossRefGoogle Scholar
  10. 10.
    Kurz A, Sessler DI, Lenhardt R (1996) Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J Med 334(19):1209–1215CrossRefGoogle Scholar
  11. 11.
    Schmied H, Kurz A, Sessler DI, Kozek S, Reiter A (1996) Mild hypothermia increases blood loss and transfusion requirements during total hip arthroplasty. Lancet 347(8997):289–292CrossRefGoogle Scholar
  12. 12.
    Feldheiser A, Aziz O, Baldini G, Cox BP, Fearon KC, Feldman LS, Gan TJ, Kennedy RH, Ljungqvist O, Lobo DN, Miller T, Radtke FF, Ruiz Garces T, Schricker T, Scott MJ, Thacker JK, Ytrebø LM, Carli F (2016) Enhanced recovery after surgery (ERAS) for gastrointestinal surgery, part 2: consensus statement for anaesthesia practice. Acta Anaesthesiol Scand 60(3):289–334CrossRefGoogle Scholar
  13. 13.
    Widman J, Hammarqvist F, Selldén E (2002) Amino acid infusion induces thermogenesis and reduces blood loss during hip arthroplasty under spinal anesthesia. Anesth Analg 95(6):1757–1762CrossRefGoogle Scholar
  14. 14.
    Imoto A, Yokoyama T, Suwa K, Yamasaki F, Yatabe T, Yokoyama R, Yamashita K, Selldén E (2010) Bolus oral or continuous intestinal amino acids reduce hypothermia during anesthesia in rats. J Nutr Sci Vitaminol 56(2):104–108CrossRefGoogle Scholar
  15. 15.
    Selldén E, Bränström R, Brundin T (1996) Preoperative infusion of amino acids prevents postoperative hypothermia. Br J Anaesth 76(2):227–234CrossRefGoogle Scholar
  16. 16.
    Mizobe T, Nakajima Y, Ueno H, Sessler DI (2006) Fructose administration increases intraoperative core temperature by augmenting both metabolic rate and the vasoconstriction threshold. Anesthesiology 104(6):1124–1130CrossRefGoogle Scholar
  17. 17.
    Yatabe T, Kawano T, Yamashita K, Yokoyama M (2011) Preoperative carbohydrate-rich beverage reduces hypothermia during general anesthesia in rats. J Anesth 25(4):558–562CrossRefGoogle Scholar
  18. 18.
    Sessler DI (2010) Perioperative heat balance. Anesthesiology 92(2):578–596CrossRefGoogle Scholar
  19. 19.
    Díaz M, Becker DE (2010) Thermoregulation: physiological and clinical considerations during sedation and general anesthesia. Anesth Prog 57(1):25–32CrossRefGoogle Scholar
  20. 20.
    Abraham NS, Young JM, Solomon MJ (2004) Meta-analysis of short-term outcomes after laparoscopic resection for colorectal cancer. Br J Surg 91(9):1111–1124CrossRefGoogle Scholar
  21. 21.
    Kennedy GD, Heise C, Rajamanickam V, Harms B, Foley EF (2009) Laparoscopy decreases postoperative complication rates after abdominal colectomy: results from the national surgical quality improvement program. Ann Surg 249(4):596–601CrossRefGoogle Scholar
  22. 22.
    Vlug MS, Wind J, Hollmann MW, Ubbink DT, Cense HA, Engel AF, Gerhards MF, van Wagensveld BA, van der Zaag ES, van Geloven AA, Sprangers MA, Cuesta MA, Bemelman WA (2011) Laparoscopy in combination with fast track multimodal management is the best perioperative strategy in patients undergoing colonic surgery: a randomized clinical trial (LAFA-study). Ann Surg 254(6):868–875CrossRefGoogle Scholar
  23. 23.
    Lacy AM, García-Valdecasas JC, Delgado S, Castells A, Taurá P, Piqué JM, Visa J (2002) Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial. Lancet 359(9325):2224–2229CrossRefGoogle Scholar
  24. 24.
    Nelson H, Sargent DJ, Wieand HS, Fleshman J, Anvari M, Stryker SJ, Beart RW Jr, Hellinger M, Flanagan R Jr, Peters W, Ota D (2004) A comparison of laparoscopically assisted and open colectomy for colon cancer. N Engl J Med 350(20):2050–2059CrossRefGoogle Scholar
  25. 25.
    Leung KL, Kwok SP, Lam SC, Lee JF, Yiu RY, Ng SS, Lai PB, Lau WY (2004) Laparoscopic resection of rectosigmoid carcinoma: prospective randomised trial. Lancet 363(9416):1187–1192CrossRefGoogle Scholar
  26. 26.
    Guillou PJ, Quirke P, Thorpe H, Walker J, Jayne DG, Smith AM, Heath RM, Brown JM (2005) Short-term endpoints of conventional versus laparoscopic-assisted surgery in patients with colorectal cancer (MRC CLASICC trial): multicentre, randomised controlled trial. Lancet 365(9472):1718–1726CrossRefGoogle Scholar
  27. 27.
    Stewart BT, Stitz RW, Tuch MM, Lumley JW (1999) Hypothermia in open and laparoscopic colorectal surgery. Dis Colon Rectum 42(10):1292–1295CrossRefGoogle Scholar
  28. 28.
    Dean M, Ramsay R, Heriot A, Mackay J, Hiscock R, Lynch AC (2017) Warmed, humidified CO2 insufflation benefits intraoperative core temperature during laparoscopic surgery: a meta-analysis. Asian J Endosc Surg 10(2):128–136CrossRefGoogle Scholar
  29. 29.
    Crowe PJ, Dennison A, Royle GT (1984) The effect of pre-operative glucose loading on postoperative nitrogen metabolism. Br J Surg 71(8):635–637CrossRefGoogle Scholar
  30. 30.
    Svanfeldt M, Thorell A, Hausel J, Soop M, Rooyackers O, Nygren J, Ljungqvist O (2007) Randomized clinical trial of the effect of preoperative oral carbohydrate treatment on postoperative whole-body protein and glucose kinetics. Br J Surg 94(11):1342–1350CrossRefGoogle Scholar
  31. 31.
    Yuill KA, Richardson RA, Davidson HI, Garden OJ, Parks RW (2005) The administration of an oral carbohydrate-containing fluid prior to major elective upper-gastrointestinal surgery preserves skeletal muscle mass postoperatively–a randomised clinical trial. Clin Nutr 24(1):32–37CrossRefGoogle Scholar
  32. 32.
    Henriksen MG, Hessov I, Dela F, Hansen HV, Haraldsted V, Rodt SA (2003) Effects of preoperative oral carbohydrates and peptides on postoperative endocrine response, mobilization, nutrition and muscle function in abdominal surgery. Acta Anaesthesiol Scand 47(2):191–199CrossRefGoogle Scholar
  33. 33.
    Noblett SE, Watson DS, Huong H, Davison B, Hainsworth PJ, Horgan AF (2006) Pre-operative oral carbohydrate loading in colorectal surgery: a randomized controlled trial. Colorectal Dis 8(7):563–569CrossRefGoogle Scholar
  34. 34.
    Janssen I, Heymsfield SB, Baumgartner RN, Ross R (2000) Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol 89(2):465–471CrossRefGoogle Scholar
  35. 35.
    Kaido T, Ogawa K, Fujimoto Y, Ogura Y, Hata K, Ito T, Tomiyama K, Yagi S, Mori A, Uemoto S (2013) Impact of sarcopenia on survival in patients undergoing living donor liver transplantation. Am J Transpl 13(6):1549–1556CrossRefGoogle Scholar
  36. 36.
    Tanaka R, Lee SW, Kawai M, Tashiro K, Kawashima S, Kagota S, Honda K, Uchiyama K (2017) Protocol for enhanced recovery after surgery improves short-term outcomes for patients with gastric cancer: a randomized clinical trial. Gastric Cancer 20(5):861–871CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of General and Gastroenterological SurgeryOsaka Medical CollegeTakatsukiJapan

Personalised recommendations