Surgical Endoscopy

, Volume 32, Issue 8, pp 3706–3712 | Cite as

3D vision and maintenance of stable pneumoperitoneum: a new step in the development of laparoscopic right hepatectomy

  • Takayuki Kawai
  • Claire Goumard
  • Florence Jeune
  • Shohei Komatsu
  • Olivier Soubrane
  • Olivier ScattonEmail author
Dynamic Manuscript



Although laparoscopic liver resection is widely performed, many technical difficulties remain, such as accurate isolation/division of hepatic vessels in laparoscopic right hepatectomy (LRH). Innovative surgical devices, such as three-dimensional (3D) laparoscopy and optimized carbon dioxide (CO2) insufflation system, may help to overcome technical difficulties in LRH. The purpose of this study was to analyze the efficacy of 3D vision associated with active pneumoperitoneum maintenance in LRH.


In our prospectively maintained database from 2006, 75 consecutive LRH from May 2011 to June 2017 were included in this study. All LRH were performed with 2D vision and standard CO2 insufflator (2D-LRH group, 45 cases) or 3D vision with optimized CO2 insufflator (3D-LRH group, 30 cases). Preoperative clinical characteristics, surgical data including operation time of separate steps within the procedure, and postoperative complications were compared between the two groups.


Clinical and pathological factors were comparable between two groups. Total operative time was significantly shorter in 3D-LRH group than in 2D-LRH (360 vs 390 min, P = 0.029). Right hepatic pedicle dissection time was significantly shorter in 3D-LRH group (101 vs 123 min, P = 0.003). Liver parenchyma transection time was also shorter in 3D-LRH group (138 vs 151 min, P = 0.089), although not significant. There was no significant difference in liver mobilization time, intraoperative bleeding/transfusion, and postoperative complications.


3D vision with maintenance of pneumoperitoneum facilitates hepatic vascular isolation/division, and may contribute to the development of LRH.


Laparoscopic right hepatectomy 3D vision Pneumoperitoneum maintenance Operative time 


Compliance with ethical standards


Takayuki Kawai, Claire Goumard, Florence Jeune, Shohei Komatsu, Olivier Soubrane, and Olivier Scatton have no conflicts of interest or financial ties to disclose.

Supplementary material

Supplementary material 1 (AVI 1050569 KB)


  1. 1.
    Buell JF, Cherqui D, Geller DA et al (2009) The international position on laparoscopic liver surgery: the Louisville Statement, 2008. Ann Surg 250:825–830CrossRefPubMedGoogle Scholar
  2. 2.
    Wakabayashi G, Cherqui D, Geller DA et al (2015) Recommendations for laparoscopic liver resection: a report from the second international consensus conference held in Morioka. Ann Surg 261:619–629PubMedGoogle Scholar
  3. 3.
    Nguyen KT, Gamblin TC, Geller DA (2009) World review of laparoscopic liver resection-2,804 patients. Ann Surg 250:831–841CrossRefPubMedGoogle Scholar
  4. 4.
    Buell JF, Thomas MT, Rudich S et al (2008) Experience with more than 500 minimally invasive hepatic procedures. Ann Surg 248:475–486PubMedGoogle Scholar
  5. 5.
    Sasaki A, Nitta H, Otsuka K et al (2009) Ten-year experience of totally laparoscopic liver resection in a single institution. Br J Surg 96:274–279CrossRefPubMedGoogle Scholar
  6. 6.
    Tranchart H, Di Giuro G, Lainas P et al (2010) Laparoscopic resection for hepatocellular carcinoma: a matched-pair comparative study. Surg Endosc 24:1170–1176CrossRefPubMedGoogle Scholar
  7. 7.
    Beppu T, Wakabayashi G, Hasegawa K et al (2015) Long-term and perioperative outcomes of laparoscopic versus open liver resection for colorectal liver metastases with propensity score matching: a multi-institutional Japanese study. J Hepatobiliary Pancreat Sci 22:711–720CrossRefPubMedGoogle Scholar
  8. 8.
    Ciria R, Cherqui D, Geller DA et al (2016) Comparative short-term benefits of laparoscopic liver resection: 9000 cases and climbing. Ann Surg 263:761–777CrossRefPubMedGoogle Scholar
  9. 9.
    Dagher I, Gayet B, Tzanis D et al (2014) International experience for laparoscopic major liver resection. J Hepatobiliary Pancreat Sci 21:732–736CrossRefPubMedGoogle Scholar
  10. 10.
    Nomi T, Fuks D, Govindasamy M et al (2015) Risk factors for complications after laparoscopic major hepatectomy. Br J Surg 102:254–260CrossRefPubMedGoogle Scholar
  11. 11.
    Kluger MD, Vigano L, Barroso R et al (2013) The learning curve in laparoscopic major liver resection. J Hepatobiliary Pancreat Sci 20:131–136CrossRefPubMedGoogle Scholar
  12. 12.
    Lin NC, Nitta H, Wakabayashi G (2013) Laparoscopic major hepatectomy: a systematic literature review and comparison of 3 techniques. Ann Surg 257:205–213CrossRefPubMedGoogle Scholar
  13. 13.
    Soubrane O, Schwarz L, Cauchy F et al (2015) A conceptual technique for laparoscopic right hepatectomy based on facts and oncologic principles: the Caudal approach. Ann Surg 261:1226–1231CrossRefPubMedGoogle Scholar
  14. 14.
    Komatsu S, Scatton O, Goumard C et al (2017) Development process and technical aspects of laparoscopic hepatectomy: learning curve based on 15 years of experience. J Am Coll Surg 224:841–850CrossRefPubMedGoogle Scholar
  15. 15.
    Fergo C, Burcharth J, Pommergaard HC et al (2017) Three-dimensional laparoscopy vs 2-dimensional laparoscopy with high-definition technology for abdominal surgery: a systematic review. Am J Surg 213:159–170CrossRefPubMedGoogle Scholar
  16. 16.
    Sørensen SM, Savran MM, Konge L et al (2016) Three-dimensional versus two-dimensional vision in laparoscopy: a systematic review. Surg Endosc 30:11–23CrossRefPubMedGoogle Scholar
  17. 17.
    Usta TA, Ozkaynak A, Kovalak E et al (2015) An assessment of the new generation three-dimensional high definition laparoscopic vision system on surgical skills: a randomized prospective study. Surg Endosc 29:2305–2313CrossRefPubMedGoogle Scholar
  18. 18.
    Currò G, La Malfa G, Caizzone A et al (2015) Three-dimensional (3D) versus two-dimensional (2D) laparoscopic bariatric surgery: a single-surgeon prospective randomized comparative study. Obes Surg 25:2120–2124CrossRefPubMedGoogle Scholar
  19. 19.
    Mashiach R, Mezhybovsky V, Nevler A et al (2014) Three-dimensional imaging improves surgical skill performance in a laparoscopic test model for both experienced and novice laparoscopic surgeons. Surg Endosc 28:3489–3493CrossRefPubMedGoogle Scholar
  20. 20.
    Smith R, Schwab K, Day A et al (2014) Effect of passive polarizing three-dimensional displays on surgical performance for experienced laparoscopic surgeons. Br J Surg 101:1453–1459CrossRefPubMedGoogle Scholar
  21. 21.
    Luketina RR, Knauer M, Köhler G et al (2014) Comparison of a standard CO2 pressure pneumoperitoneum insufflator versus AirSeal: study protocol of a randomized controlled trial. Trials 15:239CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240:205–213CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Balzan S, Belghiti J, Farges O et al (2005) The “50–50 criteria” on postoperative day 5: an accurate predictor of liver failure and death after hepatectomy. Ann Surg 242:824–828 (discussion 828–829)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cherqui D, Husson E, Hammoud R et al (2000) Laparoscopic liver resections: a feasibility study in 30 patients. Ann Surg 232:753–762CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Descottes B, Glineur D, Lachachi F et al (2003) Laparoscopic liver resection of benign liver tumors. Surg Endosc 17:23–30CrossRefPubMedGoogle Scholar
  26. 26.
    Dagher I, Lainas P, Carloni A et al (2008) Laparoscopic liver resection for hepatocellular carcinoma. Surg Endosc 22:372–378CrossRefPubMedGoogle Scholar
  27. 27.
    Scatton O, Katsanos G, Boillot O et al (2015) Pure laparoscopic left lateral sectionectomy in living donors: from innovation to development in France. Ann Surg 261:506–512CrossRefPubMedGoogle Scholar
  28. 28.
    Komatsu S, Brustia R, Goumard C et al (2016) Laparoscopic versus open major hepatectomy for hepatocellular carcinoma: a matched pair analysis. Surg Endosc 30:1965–1974CrossRefPubMedGoogle Scholar
  29. 29.
    Goumard C, Komatsu S, Brustia R et al (2017) Technical feasibility and safety of laparoscopic right hepatectomy for hepatocellular carcinoma following sequential TACE-PVE: a comparative study. Surg Endosc 31:2340–2349CrossRefPubMedGoogle Scholar
  30. 30.
    Cauchy F, Fuks D, Nomi T et al (2016) Benefits of laparoscopy in elderly patients requiring major liver resection. J Am Coll Surg 222:174–184.e110CrossRefPubMedGoogle Scholar
  31. 31.
    Fuks D, Cauchy F, Ftériche S et al (2016) Laparoscopy decreases pulmonary complications in patients undergoing major liver resection: a propensity score analysis. Ann Surg 263:353–361CrossRefPubMedGoogle Scholar
  32. 32.
    Kong SH, Oh BM, Yoon H et al (2010) Comparison of two- and three-dimensional camera systems in laparoscopic performance: a novel 3D system with one camera. Surg Endosc 24:1132–1143CrossRefPubMedGoogle Scholar
  33. 33.
    Martínez-Ubieto F, Jiménez-Bernadó T, Martínez-Ubieto J et al (2015) Three-dimensional laparoscopic sleeve gastrectomy: improved patient safety and surgeon convenience. Int Surg 100:1134–1137CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Velayutham V, Fuks D, Nomi T et al (2016) 3D visualization reduces operating time when compared to high-definition 2D in laparoscopic liver resection: a case-matched study. Surg Endosc 30:147–153CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Takayuki Kawai
    • 1
  • Claire Goumard
    • 1
  • Florence Jeune
    • 1
  • Shohei Komatsu
    • 2
  • Olivier Soubrane
    • 3
  • Olivier Scatton
    • 1
    Email author
  1. 1.Department of Hepatobiliary Surgery and Liver Transplantation, Pitié-Salpétrière HospitalSorbonne University, UMRS-938ParisFrance
  2. 2.Department of Surgery, Graduate School of MedicineKobe UniversityHyogoJapan
  3. 3.Department of Hepatobiliary Surgery and Liver Transplantation, Beaujon HospitalUniversity Paris VII Denis DiderotParisFrance

Personalised recommendations