Advertisement

Surgical Endoscopy

, Volume 32, Issue 9, pp 4052–4061 | Cite as

Computer-assisted 3D bowel length measurement for quantitative laparoscopy

  • Martin Wagner
  • Benjamin Friedrich Berthold Mayer
  • Sebastian Bodenstedt
  • Katherine Stemmer
  • Arash Fereydooni
  • Stefanie Speidel
  • Rüdiger Dillmann
  • Felix Nickel
  • Lars Fischer
  • Hannes Götz KenngottEmail author
New Technology

Abstract

Background

This study aimed at developing and evaluating a tool for computer-assisted 3D bowel length measurement (BMS) to improve objective measurement in minimally invasive surgery. Standardization and quality of surgery as well as its documentation are currently limited by lack of objective intraoperative measurements. To solve this problem, we developed BMS as a clinical application of Quantitative Laparoscopy (QL).

Methods

BMS processes images from a conventional 3D laparoscope. Computer vision algorithms are used to measure the distance between laparoscopic instruments along a 3D reconstruction of the bowel surface. Preclinical evaluation was performed in phantom, ex vivo porcine, and in vivo porcine models. A bowel length of 70 cm was measured with BMS and compared to a manually obtained ground truth. Afterwards 70 cm of bowel (ground truth) was measured and compared to BMS.

Results

Ground truth was 66.1 ± 2.7 cm (relative error + 5.8%) in phantom, 65.8 ± 2.5 cm (relative error + 6.4%) in ex vivo, and 67.5 ± 6.6 cm (relative error + 3.7%) in in vivo porcine evaluation when 70 cm was measured with BMS. Using 70 cm of bowel, BMS measured 75.0 ± 2.9 cm (relative error + 7.2%) in phantom and 74.4 ± 2.8 cm (relative error + 6.3%) in ex vivo porcine evaluation. After thorough preclinical evaluation, BMS was successfully used in a patient undergoing laparoscopic Roux-en-Y gastric bypass for morbid obesity.

Conclusions

QL using BMS was shown to be feasible and was successfully translated from studies on phantom, ex vivo, and in vivo porcine bowel to a clinical feasibility study.

Keywords

Quantitative laparoscopy Bowel measurement 3D laparoscopy Computer-assisted surgery Roux-en-Y gastric bypass 

Notes

Acknowledgements

We thank Simon Mayer, School of Design of Pforzheim University, Germany, for the design of the graphical user interface.

Funding

This work was supported by the German Research Foundation (DFG) within the project A01 of the transregional collaborative research center 125 “Cognition-Guided Surgery” (principal investigator Stefanie Speidel) and by Heidelberg University Medical School with a Physician-Scientist-Fellowship for Martin Wagner.

Compliance with ethical standards

Disclosures

Martin Wagner and Hannes Götz Kenngott work with device manufacturer Karl Storz GmbH & Co. KG in the joint research project “InnOPlan,” funded by the German Federal Ministry of Economic Affairs and Energy (grant number BMWI 01MD15002E). Sebastian Bodenstedt and Stefanie Speidel work with device manufacturer Karl Storz GmbH & Co. KG in the joint research project “OP4.1,” funded by the German Federal Ministry of Economic Affairs and Energy (grant number BMWI 01MT17001C). Benjamin Friedrich Berthold Mayer, Katherine Stemmer, Arash Fereydooni, Rüdiger Dillmann, Felix Nickel, and Lars Fischer have no conflict of interest or financial ties to disclose.

Supplementary material

Supplementary material video 1. Demonstration of bowel measurement system with measurement sequence during first in human study (MP4 58860 KB)

References

  1. 1.
    Diener MK, Simon T, Büchler MW, Seiler CM (2011) Surgical evaluation and knowledge transfer—methods of clinical research in surgery. Langenbecks Arch Surg 397:1193–1199.  https://doi.org/10.1007/s00423-011-0775-x CrossRefPubMedGoogle Scholar
  2. 2.
    Diener MK, Seiler CM, Rossion I, Kleeff J, Glanemann M, Butturini G, Tomazic A, Bruns CJ, Busch OR, Farkas S, Belyaev O, Neoptolemos JP, Halloran C, Keck T, Niedergethmann M, Gellert K, Witzigmann H, Kollmar O, Langer P, Steger U, Neudecker J, Berrevoet F, Ganzera S, Heiss MM, Luntz SP, Bruckner T, Kieser M, Büchler MW (2011) Efficacy of stapler versus hand-sewn closure after distal pancreatectomy (DISPACT): a randomised, controlled multicentre trial. Lancet 377:1514–1522.  https://doi.org/10.1016/S0140-6736(11)60237-7 CrossRefPubMedGoogle Scholar
  3. 3.
    Aerts HJWL., Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006.  https://doi.org/10.1038/ncomms5006 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Granderath FA, Schweiger UM, Pointner R (2006) Laparoscopic antireflux surgery: tailoring the hiatal closure to the size of hiatal surface area. Surg Endosc 21:542–548.  https://doi.org/10.1007/s00464-006-9041-7 CrossRefPubMedGoogle Scholar
  5. 5.
    Grubnik VV, Malynovskyy AV (2013) Laparoscopic repair of hiatal hernias: new classification supported by long-term results. Surg Endosc 27:4337–4346.  https://doi.org/10.1007/s00464-013-3069-2 CrossRefPubMedGoogle Scholar
  6. 6.
    Vines L, Schiesser M (2014) Gastric bypass: current results and different techniques. Dig Surg 31:33–39.  https://doi.org/10.1159/000360433 CrossRefPubMedGoogle Scholar
  7. 7.
    Madan AK, Harper JL, Tichansky DS (2008) Techniques of laparoscopic gastric bypass: on-line survey of American Society for Bariatric Surgery practicing surgeons. Surg Obes Relat Dis 4:166–172.  https://doi.org/10.1016/j.soard.2007.08.006 CrossRefPubMedGoogle Scholar
  8. 8.
    Bodenstedt S, Wagner M, Mayer B, Stemmer K, Kenngott H, Müller-Stich B, Dillmann R, Speidel S (2015) Image-based laparoscopic bowel measurement. Int J Comput Assist Radiol Surg.  https://doi.org/10.1007/s11548-015-1291-1 CrossRefPubMedGoogle Scholar
  9. 9.
    Schroff F, Criminsi A, Zisserman A (2008) Object class segmentation using random forests. In: Proceedings of the British machine conference, pp 54.1–54.10.  https://doi.org/10.5244/C.22.54
  10. 10.
    Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271.  https://doi.org/10.1007/BF01386390 CrossRefGoogle Scholar
  11. 11.
    Müller-Stich BP, Fischer L, Kenngott HG, Gondan M, Senft J, Clemens G, Nickel F, Fleming T, Nawroth PP, Büchler MW (2013) Gastric bypass leads to improvement of diabetic neuropathy independent of glucose normalization–results of a prospective cohort study (DiaSurg 1 study). Ann Surg 258:760–766.  https://doi.org/10.1097/SLA.0b013e3182a618b2 CrossRefPubMedGoogle Scholar
  12. 12.
    Russell W (1992) The principles of humane experimental technique, Special edn. Univ. Federation for Animal Welfare, HertsGoogle Scholar
  13. 13.
    National Research Council (US) (2011) Guide for the care and use of laboratory animals, 8th edn. National Academies Press, Washington, D.C.Google Scholar
  14. 14.
    Clutton RE, Blissitt KJ, Bradley AA, Camburn MA (1997) Comparison of three injectable anaesthetic techniques in pigs. Vet Rec 141:140–146CrossRefPubMedGoogle Scholar
  15. 15.
    Katkhouda N, Moazzez A, Popek S, Towfigh S, Cohen B, Lam B, Boulom V (2009) A new and standardized approach for trocar placement in laparoscopic Roux-en-Y gastric bypass. Surg Endosc 23:659–662.  https://doi.org/10.1007/s00464-008-0075-x CrossRefPubMedGoogle Scholar
  16. 16.
    Tacchino RM (2015) Bowel length: measurement, predictors, and impact on bariatric and metabolic surgery. Surg Obes Relat Dis 11:328–334.  https://doi.org/10.1016/j.soard.2014.09.016 CrossRefPubMedGoogle Scholar
  17. 17.
    Maier-Hein L, Groch A, Bartoli A, Bodenstedt S, Boissonnat G, Chang PL, Clancy NT, Elson DS, Haase S, Heim E, Hornegger J, Jannin P, Kenngott H, Kilgus T, Müller-Stich B, Oladokun D, Röhl S, Santos TR dos, Schlemmer HP, Seitel A, Speidel S, Wagner M, Stoyanov D (2014) Comparative validation of single-shot optical techniques for laparoscopic 3-D surface reconstruction. IEEE Trans Med Imaging 33:1913–1930.  https://doi.org/10.1109/TMI.2014.2325607 CrossRefPubMedGoogle Scholar
  18. 18.
    Bernal E, Casado S, Grasa ÓG, Montiel JMM, Gil I (2014) Computer vision distance measurement from endoscopic sequences: prospective evaluation in laparoscopic ventral hernia repair. Surg Endosc 28:3506–3512.  https://doi.org/10.1007/s00464-014-3632-5 CrossRefPubMedGoogle Scholar
  19. 19.
    Fagotti A, Ferrandina G, Fanfani F, Ercoli A, Lorusso D, Rossi M, Scambia G (2006) A laparoscopy-based score to predict surgical outcome in patients with advanced ovarian carcinoma: a pilot study. Ann Surg Oncol 13:1156–1161.  https://doi.org/10.1245/ASO.2006.08.021 CrossRefPubMedGoogle Scholar
  20. 20.
    Fotopoulou C, Richter R, Braicu EI, Schmidt S-C, Lichtenegger W, Sehouli J (2010) Can complete tumor resection be predicted in advanced primary epithelial ovarian cancer? A systematic evaluation of 360 consecutive patients. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol 36:1202–1210.  https://doi.org/10.1016/j.ejso.2010.09.008 CrossRefGoogle Scholar
  21. 21.
    Mirota DJ, Ishii M, Hager GD (2011) Vision-based navigation in image-guided interventions. Annu Rev Biomed Eng 13:297–319.  https://doi.org/10.1146/annurev-bioeng-071910-124757 CrossRefPubMedGoogle Scholar
  22. 22.
    Stoyanov D (2011) Surgical vision. Ann Biomed Eng 40:332–345.  https://doi.org/10.1007/s10439-011-0441-z CrossRefPubMedGoogle Scholar
  23. 23.
    Meisner EM, Hager GD, Ishman SL, Brown D, Tunkel DE, Ishii M (2013) Anatomical reconstructions of pediatric airways from endoscopic images: a pilot study of the accuracy of quantitative endoscopy. Laryngoscope 123:2880–2887.  https://doi.org/10.1002/lary.24046 CrossRefPubMedGoogle Scholar
  24. 24.
    Wijesundara K, Zdanski C, Kimbell J, Price H, Iftimia N, Oldenburg AL (2014) Quantitative upper airway endoscopy with swept-source anatomical optical coherence tomography. Biomed Opt Express 5:788–799.  https://doi.org/10.1364/BOE.5.000788 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Leigh MS, Armstrong JJ, Paduch A, Walsh JH, Hillman DR, Eastwood PR, Sampson DD (2008) Anatomical optical coherence tomography for long-term, portable, quantitative endoscopy. IEEE Trans Biomed Eng 55:1438–1446.  https://doi.org/10.1109/TBME.2007.913409 CrossRefPubMedGoogle Scholar
  26. 26.
    Armstrong JJ, Leigh MS, Sampson DD, Walsh JH, Hillman DR, Eastwood PR (2006) Quantitative upper airway imaging with anatomic optical coherence tomography. Am J Respir Crit Care Med 173:226–233.  https://doi.org/10.1164/rccm.200507-1148OC CrossRefPubMedGoogle Scholar
  27. 27.
    Hsu PP, Tan AKL, Tan BYB, Gan EC, Chan YH, Blair RL, Lu PKS (2007) Uvulopalatopharyngoplasty outcome assessment with quantitative computer-assisted videoendoscopic airway analysis. Acta Otolaryngol (Stockh) 127:65–70.  https://doi.org/10.1080/00016480600672659 CrossRefGoogle Scholar
  28. 28.
    Irani S, Thuer I, Seifert B, Speich R, Boehler A (2009) Endoscopic narrow-band imaging—quantitative assessment of airway vascularity after lung transplantation. J Biomed Opt 14:14010.  https://doi.org/10.1117/1.3076189 CrossRefGoogle Scholar
  29. 29.
    Heath EI, Canto MI, Piantadosi S, Montgomery E, Weinstein WM, Herman JG, Dannenberg AJ, Yang VW, Shar AO, Hawk E, Forastiere AA (2007) Secondary chemoprevention of Barrett’s esophagus with celecoxib: results of a randomized trial. J Natl Cancer Inst 99:545–557.  https://doi.org/10.1093/jnci/djk112 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Shar AO, Gaudard MA, Heath EI, Forastiere AA, Yang VW, Sontag SJ (2008) Quantitative endoscopy in the chemoprevention of Barrett’s esophagus trial. Dis Esophagus 21:641–644.  https://doi.org/10.1111/j.1442-2050.2008.00835.x CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Shar AO, Gaudard MA, Heath EI, Forastiere AA, Yang VW, Sontag SJ (2009) Modeling using baseline characteristics in a small multicenter clinical trial for Barrett’s esophagus. Contemp Clin Trials 30:2–7.  https://doi.org/10.1016/j.cct.2008.10.001 CrossRefPubMedGoogle Scholar
  32. 32.
    Goh AC, Gill IS, Lee DJ, de Castro Abreu AL, Fairey AS, Leslie S, Berger AK, Daneshmand S, Sotelo R, Gill KS, Xie HW, Chu LY, Aron M, Desai MM (2012) Robotic intracorporeal orthotopic ileal neobladder: replicating open surgical principles. Eur Urol 62:891–901.  https://doi.org/10.1016/j.eururo.2012.07.052 CrossRefPubMedGoogle Scholar
  33. 33.
    Angrisani L, Santonicola A, Iovino P, Formisano G, Buchwald H, Scopinaro N (2015) Bariatric surgery worldwide 2013. Obes Surg 25:1822–1832.  https://doi.org/10.1007/s11695-015-1657-z CrossRefPubMedGoogle Scholar
  34. 34.
    Stefanidis D, Kuwada TS, Gersin KS (2011) The importance of the length of the limbs for gastric bypass patients—an evidence-based review. Obes Surg 21:119–124.  https://doi.org/10.1007/s11695-010-0239-3 CrossRefPubMedGoogle Scholar
  35. 35.
    Nergaard BJ, Leifsson BG, Hedenbro J, Gislason H (2014) Gastric bypass with long alimentary limb or long pancreato-biliary limb–long-term results on weight loss, resolution of co-morbidities and metabolic parameters. Obes Surg 24:1595–1602.  https://doi.org/10.1007/s11695-014-1245-7 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kassir R, Blanc P, Vola M, Tiffet O (2016) Common limb length does not influence weight loss after standard laparoscopic Roux-En-Y gastric bypass. Obes Surg.  https://doi.org/10.1007/s11695-016-2109-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Martin Wagner
    • 1
  • Benjamin Friedrich Berthold Mayer
    • 1
  • Sebastian Bodenstedt
    • 2
  • Katherine Stemmer
    • 1
  • Arash Fereydooni
    • 1
  • Stefanie Speidel
    • 2
  • Rüdiger Dillmann
    • 3
  • Felix Nickel
    • 1
  • Lars Fischer
    • 1
  • Hannes Götz Kenngott
    • 1
    Email author
  1. 1.Department of General, Visceral and Transplant SurgeryUniversity Hospital HeidelbergHeidelbergGermany
  2. 2.Translational Surgical OncologyNational Center for Tumor Diseases – Partner Site DresdenDresdenGermany
  3. 3.Institute for Anthropomatics and RoboticsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations