Advertisement

Surgical Endoscopy

, Volume 32, Issue 8, pp 3659–3666 | Cite as

Does prolonged operative time impact postoperative morbidity in patients undergoing robotic-assisted rectal resection for cancer?

  • E. Duchalais
  • N. Machairas
  • S. R. Kelley
  • R. G. Landmann
  • A. Merchea
  • D. T. Colibaseanu
  • K. L. Mathis
  • E. J. Dozois
  • D. W. Larson
Article

Abstract

Background

Several studies have shown a correlation between longer operative times and higher rates of postoperative morbidity for open and laparoscopic surgery for rectal cancer. The aim of the study was to determine the impact of prolonged operative time on early postoperative morbidity in patients undergoing robotic-assisted rectal cancer resection.

Methods

The study was a retrospective review of a prospectively maintained database conducted in two centers of the same institution. A total of 260 consecutive patients undergoing with robotic-assisted resection for rectal cancer between 2007 and 2016 were included. Patients were divided into two groups regarding median operative time: > 300 min (prolonged operative time; n = 133) and ≤ 300 min (control; n = 127). Patient characteristics, operative and postoperative data were compared between groups. Univariate and multivariate analyses were performed to determine whether prolonged operative time was a predictive factor of 30-day postoperative morbidity.

Results

Prolonged operative time was noted more frequently in males (p = 0.02), patients with higher BMI (p < 0.01), more severe comorbidities (p < 0.01), in tumors of the mid-rectum, and in surgery performed after neoadjuvant chemoradiation or upon surgeons’ learning curve. The two groups had similar overall postoperative morbidity (32 vs. 41%; p = 0.16) and severe morbidity (6 vs. 6%; p = 0.92) rates. Prolonged operative time was associated with longer hospital stay (3.8 ± 2.5 vs. 5.0 ± 3.7 days; p = 0.004) in univariate analysis. Prolonged operative time was not independently associated with postoperative morbidity or with increased hospital stay on multivariate analysis.

Conclusion

In our study, prolonged operative time was not associated with an over-risk of morbidity in patients undergoing robotic resection for rectal cancer. These results suggest that more difficult robotic procedures do not lead to increased postoperative morbidity.

Keywords

Robotic surgery Rectal cancer Operative time Proctectomy Postoperative morbidity 

Notes

Acknowledgements

We thank the members of the ‘Fondation SanTDige’ for their support by a grant to Emilie Duchalais.

Funding

The ‘Fondation SanTDige’ provided a grant to Emilie Duchalais.

Compliance with ethical standards

Disclosures

Drs Emilie Duchalais, Nikolaos Machairas N, Scott R. Kelley, Ron G. Landman, Amit Merchea A, Dorin T. Colibaseanu, Kellie L. Mathis, Eric J. Dozois and David W. Larson have no conflicts of interest or financial ties to disclose.

References

  1. 1.
    van de Velde CJH, Boelens PG, Tanis PJ, Espin E, Mroczkowski P, Naredi P, Pahlman L, Ortiz H, Rutten HJ, Breugom AJ, Smith JJ, Wibe A, Wiggers T, Valentini V (2014) Experts reviews of the multidisciplinary consensus conference colon and rectal cancer 2012. Eur J Surg Oncol 40:454–468.  https://doi.org/10.1016/j.ejso.2013.10.013 CrossRefPubMedGoogle Scholar
  2. 2.
    Bonjer HJ, Deijen CL, Abis GA, Cuesta MA, van der Pas MHGM., de Lange-de Klerk ESM, Lacy AM, Bemelman WA, Andersson J, Angenete E, Rosenberg J, Fuerst A, Haglind E (2015) A randomized trial of laparoscopic versus open surgery for rectal cancer. N Engl J Med 372:1324–1332.  https://doi.org/10.1056/NEJMoa1414882 CrossRefPubMedGoogle Scholar
  3. 3.
    Lujan J, Valero G, Hernandez Q, Sanchez A, Frutos MD, Parrilla P (2009) Randomized clinical trial comparing laparoscopic and open surgery in patients with rectal cancer. Br J Surg 96:982–989.  https://doi.org/10.1002/bjs.6662 CrossRefPubMedGoogle Scholar
  4. 4.
    Jeong S-Y, Park JW, Nam BH, Kim S, Kang S-B, Lim S-B, Choi HS, Kim D-W, Chang HJ, Kim DY, Jung KH, Kim T-Y, Kang GH, Chie EK, Kim SY, Sohn DK, Kim D-H, Kim J-S, Lee HS, Kim JH, Oh JH (2014) Open versus laparoscopic surgery for mid-rectal or low-rectal cancer after neoadjuvant chemoradiotherapy (COREAN trial): survival outcomes of an open-label, non-inferiority, randomised controlled trial. Lancet Oncol 15:767–774.  https://doi.org/10.1016/S1470-2045(14)70205-0 CrossRefPubMedGoogle Scholar
  5. 5.
    Veldkamp R, Kuhry E, Hop WCJ, Jeekel J, Kazemier G, Bonjer HJ, Haglind E, Påhlman L, Cuesta MA, Msika S, Morino M, Lacy AM, COlon cancer Laparoscopic or Open Resection Study Group (COLOR) (2005) Laparoscopic surgery versus open surgery for colon cancer: short-term outcomes of a randomised trial. Lancet Oncol 6:477–484.  https://doi.org/10.1016/S1470-2045(05)70221-7 CrossRefPubMedGoogle Scholar
  6. 6.
    Ng SSM, Lee JFY, Yiu RYC, Li JCM, Hon SSF, Mak TWC, Leung WW, Leung KL (2014) Long-term oncologic outcomes of laparoscopic versus open surgery for rectal cancer. Ann Surg 259:139–147.  https://doi.org/10.1097/SLA.0b013e31828fe119 CrossRefPubMedGoogle Scholar
  7. 7.
    van der Pas MH, Haglind E, Cuesta MA, Fürst A, Lacy AM, Hop WC, Bonjer HJ (2013) Laparoscopic versus open surgery for rectal cancer (COLOR II): short-term outcomes of a randomised, phase 3 trial. Lancet Oncol 14:210–218.  https://doi.org/10.1016/S1470-2045(13)70016-0 CrossRefPubMedGoogle Scholar
  8. 8.
    Stevenson ARL, Solomon MJ, Lumley JW, Hewett P, Clouston AD, Gebski VJ, Davies L, Wilson K, Hague W, Simes J, ALaCaRT I (2015) Effect of laparoscopic-assisted resection vs open resection on pathological outcomes in rectal cancer. JAMA 314:1356.  https://doi.org/10.1001/jama.2015.12009 CrossRefPubMedGoogle Scholar
  9. 9.
    Fleshman J, Branda M, Sargent DJ, Boller AM, George V, Abbas M, Peters WR, Maun D, Chang G, Herline A, Fichera A, Mutch M, Wexner S, Whiteford M, Marks J, Birnbaum E, Margolin D, Larson D, Marcello P, Posner M, Read T, Monson J, Wren SM, Pisters PWT, Nelson H (2015) Effect of laparoscopic-assisted resection vs open resection of stage II or III rectal cancer on pathologic outcomes. JAMA 314:1346.  https://doi.org/10.1001/jama.2015.10529 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Moghadamyeghaneh Z, Phelan M, Smith BR, Stamos MJ (2015) Outcomes of open, laparoscopic, and robotic abdominoperineal resections in patients with rectal cancer. Dis Colon Rectum 58:1123–1129.  https://doi.org/10.1097/DCR.0000000000000475 CrossRefPubMedGoogle Scholar
  11. 11.
    Colombo P-E, Bertrand MM, Alline M, Boulay E, Mourregot A, Carrère S, Quénet F, Jarlier M, Rouanet P (2016) Robotic versus laparoscopic total mesorectal excision (TME) for sphincter-saving surgery: is there any difference in the transanal TME rectal approach? Ann Surg Oncol 23:1594–1600.  https://doi.org/10.1245/s10434-015-5048-4 CrossRefPubMedGoogle Scholar
  12. 12.
    Law WL, Foo DCC (2016) Comparison of short-term and oncologic outcomes of robotic and laparoscopic resection for mid- and distal rectal cancer. Surg Endosc.  https://doi.org/10.1007/s00464-016-5289-8 Google Scholar
  13. 13.
    Lim DR, Bae SU, Hur H, Min BS, Baik SH, Lee KY, Kim NK (2016) Long-term oncological outcomes of robotic versus laparoscopic total mesorectal excision of mid–low rectal cancer following neoadjuvant chemoradiation therapy. Surg Endosc.  https://doi.org/10.1007/s00464-016-5165-6 Google Scholar
  14. 14.
    Xiong B, Ma L, Huang W, Zhao Q, Cheng Y, Liu J (2015) Robotic versus laparoscopic total mesorectal excision for rectal cancer: a meta-analysis of eight studies. J Gastrointest Surg 19:516–526.  https://doi.org/10.1007/s11605-014-2697-8 CrossRefPubMedGoogle Scholar
  15. 15.
    Jayne D, Pigazzi A, Marshall H, Croft J, Corrigan N, Copeland J, Quirke P, West N, Rautio T, Thomassen N, Tilney H, Gudgeon M, Bianchi PP, Edlin R, Hulme C, Brown J (2017) Effect of robotic-assisted vs conventional laparoscopic surgery on risk of conversion to open laparotomy among patients undergoing resection for rectal cancer. JAMA 318:1569.  https://doi.org/10.1001/jama.2017.7219 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Memon S, Heriot AG, Murphy DG, Bressel M, Lynch AC (2012) Robotic versus laparoscopic proctectomy for rectal cancer: a meta-analysis. Ann Surg Oncol 19:2095–2101.  https://doi.org/10.1245/s10434-012-2270-1 CrossRefPubMedGoogle Scholar
  17. 17.
    Yang Y, Wang F, Zhang P, Shi C, Zou Y, Qin H, Ma Y (2012) Robot-assisted versus conventional laparoscopic surgery for colorectal disease, focusing on rectal cancer: a meta-analysis. Ann Surg Oncol 19:3727–3736.  https://doi.org/10.1245/s10434-012-2429-9 CrossRefPubMedGoogle Scholar
  18. 18.
    Scheer A, Martel G, Moloo H, Sabri E, Poulin EC, Mamazza J, Boushey RP (2009) Laparoscopic colon surgery: does operative time matter? Dis Colon Rectum 52:1746–1752.  https://doi.org/10.1007/DCR.0b013e3181b55616 CrossRefPubMedGoogle Scholar
  19. 19.
    McDermott FD, Heeney A, Kelly ME, Steele RJ, Carlson GL, Winter DC (2015) Systematic review of preoperative, intraoperative and postoperative risk factors for colorectal anastomotic leaks. Br J Surg 102:462–479.  https://doi.org/10.1002/bjs.9697 CrossRefPubMedGoogle Scholar
  20. 20.
    Manceau G, Hain E, Maggiori L, Mongin C, Prost à la Denise J, Panis Y (2017) Is the benefit of laparoscopy maintained in elderly patients undergoing rectal cancer resection? An analysis of 446 consecutive patients. Surg Endosc 31:632–642.  https://doi.org/10.1007/s00464-016-5009-4 CrossRefPubMedGoogle Scholar
  21. 21.
    Hasegawa Y, Wakabayashi G, Nitta H, Takahara T, Katagiri H, Umemura A, Makabe K, Sasaki A (2017) A novel model for prediction of pure laparoscopic liver resection surgical difficulty. Surg Endosc.  https://doi.org/10.1007/s00464-017-5616-8 PubMedCentralGoogle Scholar
  22. 22.
    NCCN.org NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) - Rectal cancer. Version 2.2016Google Scholar
  23. 23.
    Khreiss W, Huebner M, Cima RR, Dozois ER, Chua HK, Pemberton JH, Harmsen WS, Larson DW (2014) Improving conventional recovery with enhanced recovery in minimally invasive surgery for rectal cancer. Dis Colon Rectum 57:557–563.  https://doi.org/10.1097/DCR.0000000000000101 CrossRefPubMedGoogle Scholar
  24. 24.
    Clavien PA, Barkun J, de Oliveira ML, Vauthey JN, Dindo D, Schulick RD, de Santibañes E, Pekolj J, Slankamenac K, Bassi C, Graf R, Vonlanthen R, Padbury R, Cameron JL, Makuuchi M (2009) The Clavien-Dindo classification of surgical complications. Ann Surg 250:187–196.  https://doi.org/10.1097/SLA.0b013e3181b13ca2 CrossRefPubMedGoogle Scholar
  25. 25.
    Jiménez-Rodríguez RM, Díaz-Pavón JM, de la Portilla de Juan F, Prendes-Sillero E, Dussort HC, Padillo J (2013) Learning curve for robotic-assisted laparoscopic rectal cancer surgery. Int J Colorectal Dis 28:815–821.  https://doi.org/10.1007/s00384-012-1620-6 CrossRefPubMedGoogle Scholar
  26. 26.
    Yamaguchi T, Kinugasa Y, Shiomi A, Sato S, Yamakawa Y, Kagawa H, Tomioka H, Mori K (2015) Learning curve for robotic-assisted surgery for rectal cancer: use of the cumulative sum method. Surg Endosc 29:1679–1685.  https://doi.org/10.1007/s00464-014-3855-5 CrossRefPubMedGoogle Scholar
  27. 27.
    Kim HJ, Choi G-S, Park JS, Park SY (2014) Multidimensional analysis of the learning curve for robotic total mesorectal excision for rectal cancer. Dis Colon Rectum 57:1066–1074.  https://doi.org/10.1097/DCR.0000000000000174 CrossRefPubMedGoogle Scholar
  28. 28.
    Grass F, Slieker J, Jurt J, Kummer A, Solà J, Hahnloser D, Demartines N, Hübner M (2017) Postoperative ileus in an enhanced recovery pathway—a retrospective cohort study. Int J Colorectal Dis.  https://doi.org/10.1007/s00384-017-2789-5 PubMedGoogle Scholar
  29. 29.
    Fujii T, Sutoh T, Kigure W, Morita H, Katoh T, Yajima R, Tsutsumi S, Asao T (2015) Kuwano H C-reactive protein level as a possible predictor for early postoperative ileus following elective surgery for colorectal cancer. Hepatogastroenterology 62:283–285PubMedGoogle Scholar
  30. 30.
    ERAS Compliance Group (2015) The impact of enhanced recovery protocol compliance on elective colorectal cancer resection. Ann Surg 261:1153–1159.  https://doi.org/10.1097/SLA.0000000000001029 CrossRefGoogle Scholar
  31. 31.
    Guend H, Widmar M, Patel S, Nash GM, Paty PB, Guillem JG, Temple LK, Garcia-Aguilar J, Weiser MR (2016) Developing a robotic colorectal cancer surgery program: understanding institutional and individual learning curves. Surg Endosc.  https://doi.org/10.1007/s00464-016-5292-0 PubMedPubMedCentralGoogle Scholar
  32. 32.
    Baukloh JK, Reeh M, Spinoglio G, Corratti A, Bartolini I, Mirasolo VM, Priora F, Izbicki JR, Gomez Fleitas M, Gomez Ruiz M, Perez DR (2017) Evaluation of the robotic approach concerning pitfalls in rectal surgery. Eur J Surg Oncol.  https://doi.org/10.1016/j.ejso.2016.12.014 Google Scholar
  33. 33.
    Harr JN, Luka S, Kankaria A, Juo Y-Y, Agarwal S, Obias V (2016) Robotic-assisted colorectal surgery in obese patients: a case-matched series. Surg Endosc.  https://doi.org/10.1007/s00464-016-5291-1 Google Scholar
  34. 34.
    Shiomi A, Kinugasa Y, Yamaguchi T, Kagawa H, Yamakawa Y (2016) Robot-assisted versus laparoscopic surgery for lower rectal cancer: the impact of visceral obesity on surgical outcomes. Int J Colorectal Dis 31:1701–1710.  https://doi.org/10.1007/s00384-016-2653-z CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Colon and Rectal SurgeryMayo ClinicRochesterUSA
  2. 2.Division of Colon & Rectal SurgeryMayo ClinicJacksonvilleUSA

Personalised recommendations