Surgical Endoscopy

, Volume 32, Issue 7, pp 3410–3419 | Cite as

Design and implementation of an electromagnetic ultrasound-based navigation technique for laparoscopic ablation of liver tumors

  • Iwan PaolucciEmail author
  • Marius Schwalbe
  • Gian Andrea Prevost
  • Anja Lachenmayer
  • Daniel Candinas
  • Stefan Weber
  • Pascale Tinguely
New Technology



Efficient laparoscopic ablation of liver tumors relies on precise tumor visualization and accurate positioning of ablation probes. This study evaluates positional accuracy and procedural efficiency of a dynamic navigation technique based on electromagnetic-tracked laparoscopic ultrasound (ELUS) for laparoscopic ablation of liver tumors.


The proposed navigation approach combines intraoperative 2D ELUS-based planning for navigated positioning of ablation probes, with immediate 3D ELUS-based validation of intrahepatic probe position. The environmental influence on electromagnetic-tracking stability was evaluated in the operation room. Accuracy of navigated ablation probe positioning assessed as the target-positioning error (TPE), and procedural efficiency defined as time efforts for target definition/navigated targeting and number of probe repositionings, were evaluated in a laparoscopic model and compared with conventional laparoscopic ultrasound (LUS) guidance.


The operation-room environment showed interferences < 1 mm on the EM-tracking system. A total of 60 targeting attempts were conducted by three surgeons, with ten targeting attempts using ELUS and ten using conventional LUS each. Median TPE and time for targeting using ELUS and LUS were 4.2 mm (IQR 2.9–5.3 mm) versus 6 mm (IQR 4.7–7.5 mm), and 39 s (IQR 24–47 s) versus 76 s (IQR 47–121 s), respectively (p < 0.01 each). With ELUS, median time for target definition was 48.5 s, with 0 ablation probe repositionings compared to 17 when using LUS. The navigation technique was rated with a mean score of 85.5 on a Standard Usability Scale.


The proposed ELUS-based navigation approach allows for accurate and efficient targeting of liver tumors in a laparoscopic model. Focusing on a dynamic and tumor-targeted navigation technique relying on intraoperative imaging, this avoids potential inaccuracies due to organ deformation and yields a user-friendly technique for efficient laparoscopic ablation of liver tumors.


Ablation techniques Computer-assisted surgery Laparoscopy Ultrasonography Three-dimensional imaging Liver neoplasms 



The authors thank Matteo Fusaglia and Denise Baumann for their support in the conduction of the EM-tracking stability experiment.

Compliance with ethical standards


Mr. Iwan Paolucci, Marius Schwalbe, Drs. Gian Andrea Prevost, Anja Lachenmayer, Daniel Candinas, Stefan Weber, and Pascale Tinguely have no conflicts of interest or financial ties to disclose.


  1. 1.
    Lencioni R, de Baere T, Martin RC, Nutting CW, Narayanan G (2015) Image-guided ablation of malignant liver tumors: recommendations for clinical validation of novel thermal and non-thermal technologies - a Western perspective. Liver Cancer 4:208–214. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Engstrand J, Nilsson H, Jansson A, Isaksson B, Freedman J, Lundell L, Jonas E (2014) A multiple microwave ablation strategy in patients with initially unresectable colorectal cancer liver metastases - a safety and feasibility study of a new concept. Eur J Surg Oncol 40:1488–1493. CrossRefPubMedGoogle Scholar
  3. 3.
    Machi J, Uchida S, Sumida K, Limm WML, Hundahl SA, Oishi AJ, Furumoto NL, Oishi RH (2001) Ultrasound-guided radiofrequency thermal ablation of liver tumors: percutaneous, laparoscopic, and open surgical approaches. J Gastrointest Surg 5:477–489. CrossRefPubMedGoogle Scholar
  4. 4.
    Groeschl RT, Pilgrim CHC, Hanna EM, Simo KA, Swan RZ, Sindram D, Martinie JB, Iannitti DA, Bloomston M, Schmidt C, Khabiri H, Shirley LA, Martin RCG, Tsai S, Turaga KK, Christians KK, Rilling WS, Gamblin TC (2014) Microwave ablation for hepatic malignancies. Ann Surg 259:1195–1200. CrossRefPubMedGoogle Scholar
  5. 5.
    van Duijnhoven FH, Jansen MC, Junggeburt JMC, van Hillegersberg R, Rijken AM, van Coevorden F, van der Sijp JR, van Gulik TM, Slooter GD, Klaase JM, Putter H, Tollenaar RAEM (2006) Factors influencing the local failure rate of radiofrequency ablation of colorectal liver metastases. Ann Surg Oncol 13:651–658. CrossRefPubMedGoogle Scholar
  6. 6.
    Ikemoto T, Shimada M, Yamada S (2016) Pathophysiology of recurrent hepatocellular carcinoma after radiofrequency ablation. Hepatol Res. CrossRefPubMedGoogle Scholar
  7. 7.
    Siperstein A, Garland A, Engle K, Rogers S, Berber E, String A, Foroutani A, Ryan T (2000) Laparoscopic radiofrequency ablation of primary and metastaticliver tumors. Surg Endosc 14:400–405. CrossRefPubMedGoogle Scholar
  8. 8.
    Martin RCG, North DA (2016) Enhanced ultrasound with navigation leads to improved liver lesion identification and needle placement. J Surg Res 200:420–426. CrossRefPubMedGoogle Scholar
  9. 9.
    Kingham TP, Scherer MA, Neese BW, Clements LW, Stefansic JD, Jarnagin WR (2012) Image-guided liver surgery: intraoperative projection of computed tomography images utilizing tracked ultrasound. HPB 14:594–603. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Banz VM, Müller PC, Tinguely P, Inderbitzin D, Ribes D, Peterhans M, Candinas D, Weber S (2016) Intraoperative image-guided navigation system: development and applicability in 65 patients undergoing liver surgery. Langenbeck’s Arch Surg 401:495–502. CrossRefGoogle Scholar
  11. 11.
    Tinguely P, Fusaglia M, Freedman J, Banz V, Weber S, Candinas D, Nilsson H (2017) Laparoscopic image-based navigation for microwave ablation of liver tumors—a multi-center study. Surg Endosc 31:4315–4324. CrossRefPubMedGoogle Scholar
  12. 12.
    Kingham TP, Jayaraman S, Clements LW, Scherer MA, Stefansic JD, Jarnagin WR (2013) Evolution of Image-Guided Liver Surgery: Transition from Open to Laparoscopic Procedures. J Gastrointest Surg 17:1274–1282. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kenngott HG, Wagner M, Gondan M, Nickel F, Nolden M, Fetzer A, Weitz J, Fischer L, Speidel S, Meinzer H-P, Böckler D, Büchler MW, Müller-Stich BP (2014) Real-time image guidance in laparoscopic liver surgery: first clinical experience with a guidance system based on intraoperative CT imaging. Surg Endosc 28:933–940. CrossRefPubMedGoogle Scholar
  14. 14.
    Kenngott HG, Wagner M, Nickel F, Wekerle AL, Preukschas A, Apitz M, Schulte T, Rempel R, Mietkowski P, Wagner F, Termer A, Müller-Stich BP (2015) Computer-assisted abdominal surgery: new technologies. Langenbeck’s Arch Surg 400:273–281. CrossRefGoogle Scholar
  15. 15.
    Peterhans M, Vom Berg A, Dagon B, Inderbitzin D, Baur C, Candinas D, Weber S (2011) A navigation system for open liver surgery: design, workflow and first clinical applications. Int J Med Robot Comput Assist Surg 7:7–16. CrossRefGoogle Scholar
  16. 16.
    Franz AM, Haidegger T, Birkfellner W, Cleary K, Peters TM, Maier-Hein L (2014) Electromagnetic tracking in medicine—a review of technology, validation, and applications. IEEE Trans Med Imaging 33:1702–1725. CrossRefPubMedGoogle Scholar
  17. 17.
    Solberg OV, Langø T, Tangen GA, Mårvik R, Ystgaard B, Rethy A, Hernes TAN (2009) Navigated ultrasound in laparoscopic surgery. Minim Invasive Ther Allied Technol 18:36–53. CrossRefPubMedGoogle Scholar
  18. 18.
    Askeland C, Solberg OV, Bakeng JBL, Reinertsen I, Tangen GA, Hofstad EF, Iversen DH, Våpenstad C, Selbekk T, Langø T, Hernes TAN, Olav Leira H, Unsgård G, Lindseth F (2016) CustusX: an open-source research platform for image-guided therapy. Int J Comput Assist Radiol Surg 11:505–519. CrossRefPubMedGoogle Scholar
  19. 19.
    Langø T, Vijayan S, Rethy A, Våpenstad C, Solberg OV, Mårvik R, Johnsen G, Hernes TN (2012) Navigated laparoscopic ultrasound in abdominal soft tissue surgery: Technological overview and perspectives. Int J Comput Assist Radiol Surg 7:585–599. CrossRefPubMedGoogle Scholar
  20. 20.
    Widmann G, Stoffner R, Sieb M, Bale R (2009) Target registration and target positioning errors in computer-assisted neurosurgery: proposal for a standardized reporting of error assessment. Int J Med Robot Comput Assist Surg 5:355–365. CrossRefGoogle Scholar
  21. 21.
    Peterhans M, Anderegg S, Gaillard P, Oliveira-Santos T, Weber S (2010) A fully automatic calibration framework for navigated ultrasound imaging. 2010 Annu Int Conf IEEE Eng Med Biol Soc EMBC’10 2010:1242–1245. CrossRefGoogle Scholar
  22. 22.
    Solberg OV, Lindseth F, Torp H, Blake RE, Nagelhus Hernes TA (2007) Freehand 3D ultrasound reconstruction algorithms-a review. Ultrasound Med Biol 33:991–1009. CrossRefPubMedGoogle Scholar
  23. 23.
    San José-Estépar R, Martín-Fernández M, Caballero-Martínez PP, Alberola-López C, Ruiz-Alzola J (2003) A theoretical framework to three-dimensional ultrasound reconstruction from irregularly sampled data. Ultrasound Med Biol 29:255–269. CrossRefPubMedGoogle Scholar
  24. 24.
    Yaniv Z, Wilson E, Lindisch D, Cleary K (2009) Electromagnetic tracking in the clinical environment. Med Phys 36:876–892. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Brooke J (1996) SUS - a quick and dirty usability scale. Usability Eval Ind 189:4–7. CrossRefGoogle Scholar
  26. 26.
    Bangor A, Kortum P, Miller J (2009) Determining what individual SUS scores mean: adding an adjective rating scale. J Usability Stud 4:114–123Google Scholar
  27. 27.
    Engstrand J, Toporek G, Harbut P, Jonas E, Nilsson H, Freedman J (2016) Stereotactic CT-guided percutaneous microwave ablation of liver tumors with the use of high-frequency jet ventilation: an accuracy and procedural safety study. Am J Roentgenol. CrossRefGoogle Scholar
  28. 28.
    Sindram D, McKillop IH, Martinie JB, Iannitti DA (2010) Novel 3-D laparoscopic magnetic ultrasound image guidance for lesion targeting. HPB 12:709–716CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bao P, Sinha TK, Chen CCR, Warmath JR, Galloway RL, Herline AJ (2007) A prototype ultrasound-guided laparoscopic radiofrequency ablation system. Surg Endosc 21:74–79. CrossRefPubMedGoogle Scholar
  30. 30.
    Meloni MF, Chiang J, Laeseke PF, Dietrich CF, Sannino A, Solbiati M, Nocerino E, Brace CL, Lee FT (2016) Microwave ablation in primary and secondary liver tumours: technical and clinical approaches. Int J Hyperth. CrossRefGoogle Scholar
  31. 31.
    Peterhans M, Oliveira T, Banz V, Candinas D, Weber S (2012) Computer-assisted liver surgery: clinical applications and technological trends. Crit Rev Biomed Eng 40:199–220 pii]CrossRefPubMedGoogle Scholar
  32. 32.
    Hildebrand P, Schlichting S, Martens V, Besirevic A, Kleemann M, Roblick U, Mirow L, Bürk C, Schweikard A, Bruch HP (2008) Prototype of an intraoperative navigation and documentation system for laparoscopic radiofrequency ablation: first experiences. Eur J Surg Oncol 34:418–421. CrossRefPubMedGoogle Scholar
  33. 33.
    Banz VM, Baechtold M, Weber S, Peterhans M, Inderbitzin D, Candinas D (2014) Computer planned, image-guided combined resection and ablation for bilobar colorectal liver metastases. World J Gastroenterol 20:14992–14996. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Claudon M, Cosgrove D, Albrecht T, Bolondi L, Boslo M, Calliada F, Correas JM, Darge K, Dietrich C, D’Onofrio M, Evans DH, Filice C, Greiner L, Jäger K, De Jong N, Leen E, Lencioni R, Lindsell D, Martegani A, Meairs S, Nolsøe C, Piscaglia F, Ricci P, Seidel G, Skjoldbye B, Solbiati C, Thorelius L, Tranquart F, Weskott HP, Whittingham T (2008) Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) - update 2008. Ultraschall Med 29:28–44. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ARTORG Center for Biomedical Engineering ResearchUniversity of BernBernSwitzerland
  2. 2.Department of Visceral Surgery and Medicine, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland

Personalised recommendations