Advertisement

Surgical Endoscopy

, Volume 31, Issue 9, pp 3412–3436 | Cite as

Clinical practice guideline for enhanced recovery after colon and rectal surgery from the American Society of Colon and Rectal Surgeons (ASCRS) and Society of American Gastrointestinal and Endoscopic Surgeons (SAGES)

  • Joseph C. Carmichael
  • Deborah S. Keller
  • Gabriele Baldini
  • Liliana Bordeianou
  • Eric Weiss
  • Lawrence Lee
  • Marylise Boutros
  • James McClane
  • Scott R. Steele
  • Liane S. FeldmanEmail author
Guidelines

This clinical practice guideline represents a collaborative effort between the American Society of Colon and Rectal Surgeons (ASCRS) and Society of American Gastrointestinal and Endoscopic Surgeons (SAGES). The Clinical Practice Guidelines Committee of the ASCRS is composed of society members who are chosen because they have demonstrated expertise in the specialty of colon and rectal surgery. In a collaborative effort, the ASCRS Clinical Practice Guidelines Committee and members of the SAGES SMART (Surgical Multimodal Accelerated Recovery Trajectory) Enhanced Recovery Task Force and Guidelines Committee have joined together to produce this guideline written and approved by both societies. The combined ASCRS/SAGES panel worked together to develop the statements in this guideline and approved these final recommendations. Through this effort, the ASCRS and SAGES continue their dedication to ensuring high-quality perioperative patient care.

Previous guidelines on perioperative care for...

Keywords

Enhanced recovery Colectomy Proctectomy Ileus 

Notes

Compliance with ethical standards

Disclosures

The funding bodies (ASCRS and SAGES) did not influence the content of this work and no other specific funding was received from other entities. Dr. Keller is a member of the Pacira Pharmaceuticals Speaker’s bureau and her institution has received unrestricted educational grants from Pacira. Dr. Feldman has received grant support from Medtronic and Merck. Dr. Carmichael’s institution has received unrestricted educational grant support for his work with Medtronic and Johnson & Johnson.

Supplementary material

464_2017_5722_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 kb)
464_2017_5722_MOESM2_ESM.docx (28 kb)
Supplementary material 2 (DOCX 27 kb)
464_2017_5722_MOESM3_ESM.xlsx (22 kb)
Supplementary material 3 (XLSX 22 kb)
464_2017_5722_MOESM4_ESM.xlsx (28 kb)
Supplementary material 4 (XLSX 28 kb)
464_2017_5722_MOESM5_ESM.xlsx (56 kb)
Supplementary material 5 (XLSX 55 kb)
464_2017_5722_MOESM6_ESM.xlsx (34 kb)
Supplementary material 6 (XLSX 34 kb)
464_2017_5722_MOESM7_ESM.xlsx (15 kb)
Supplementary material 7 (XLSX 14 kb)
464_2017_5722_MOESM8_ESM.xlsx (17 kb)
Supplementary material 8 (XLSX 16 kb)
464_2017_5722_MOESM9_ESM.xlsx (19 kb)
Supplementary material 9 (XLSX 18 kb)
464_2017_5722_MOESM10_ESM.xlsx (19 kb)
Supplementary material 10 (XLSX 18 kb)
464_2017_5722_MOESM11_ESM.xlsx (22 kb)
Supplementary material 11 (XLSX 22 kb)
464_2017_5722_MOESM12_ESM.xlsx (12 kb)
Supplementary material 12 (XLSX 11 kb)
464_2017_5722_MOESM13_ESM.xlsx (20 kb)
Supplementary material 13 (XLSX 20 kb)
464_2017_5722_MOESM14_ESM.xlsx (20 kb)
Supplementary material 14 (XLSX 19 kb)
464_2017_5722_MOESM15_ESM.xlsx (26 kb)
Supplementary material 15 (XLSX 25 kb)
464_2017_5722_MOESM16_ESM.xlsx (20 kb)
Supplementary material 16 (XLSX 20 kb)

References

  1. 1.
    Gustafsson U, Scott M, Schwenk W et al (2013) Guidelines for perioperative care in elective colonic surgery: enhanced Recovery After Surgery (ERAS((R))) Society recommendations. World J Surg 37:259–284PubMedCrossRefGoogle Scholar
  2. 2.
    Nygren J, Thacker J, Carli F et al (2012) Guidelines for perioperative care in elective rectal/pelvic surgery: enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Clin Nutr 31:801–816PubMedCrossRefGoogle Scholar
  3. 3.
    Kang CY, Chaudhry OO, Halabi WJ et al (2012) Outcomes of laparoscopic colorectal surgery: data from the Nationwide Inpatient Sample 2009. Am J Surg 204:952–957PubMedCrossRefGoogle Scholar
  4. 4.
    Thiele RH, Rea KM, Turrentine FE et al (2015) Standardization of care: impact of an enhanced recovery protocol on length of stay, complications, and direct costs after colorectal surgery. J Am Coll Surg 220:430–443PubMedCrossRefGoogle Scholar
  5. 5.
    Eberhart LH, Mauch M, Morin AM, Wulf H, Geldner G (2002) Impact of a multimodal anti-emetic prophylaxis on patient satisfaction in high-risk patients for postoperative nausea and vomiting. Anaesthesia 57:1022–1027PubMedCrossRefGoogle Scholar
  6. 6.
    Nagle D, Pare T, Keenan E, Marcet K, Tizio S, Poylin V (2012) Ileostomy pathway virtually eliminates readmissions for dehydration in new ostomates. Dis Colon Rectum 55:1266–1272PubMedCrossRefGoogle Scholar
  7. 7.
    Hughes M, Coolsen MM, Aahlin EK et al (2014) Attitudes of patients and care providers to enhanced recovery after surgery programs after major abdominal surgery. J Surg ResGoogle Scholar
  8. 8.
    Spanjersberg WR, Reurings J, Keus F, van Laarhoven CJ (2011) Fast track surgery versus conventional recovery strategies for colorectal surgery. Cochrane Database Syst Rev 16(2):CD007635Google Scholar
  9. 9.
    Currie AC, Malietzis G, Jenkins JT et al (2016) Network meta-analysis of protocol-driven care and laparoscopic surgery for colorectal cancer. Br J Surg. doi: 10.1002/bjs.10306 Google Scholar
  10. 10.
    Bakker N, Cakir H, Doodeman HJ, Houdijk AP (2015) Eight years of experience with Enhanced Recovery After Surgery in patients with colon cancer: impact of measures to improve adherence. Surgery 157:1130–1136PubMedCrossRefGoogle Scholar
  11. 11.
    McLeod R, Aarts M, Chung F et al (2015) Development of an enhanced recovery after surgery guideline and implementation strategy based on the knowledge-to-action cycle. Ann Surg 262:1016–1025PubMedCrossRefGoogle Scholar
  12. 12.
    Ahmed J, Khan S, Lim M, Chandrasekaran T, MacFie J (2012) Enhanced recovery after surgery protocols—compliance and variations in practice during routine colorectal surgery. Colorectal Dis 14:1045–1051PubMedCrossRefGoogle Scholar
  13. 13.
    Day R, Fielder S, Calhoun J, Kehlet H, Gottumukkala V, Aloia T (2015) Incomplete reporting of enhanced recovery elements and its impact on achieving quality improvement. Br J Surg 102:1594–1602PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Guyatt G, Gutterman D, Baumann MH et al (2006) Grading strength of recommendations and quality of evidence in clinical guidelines: report from an american college of chest physicians task force. Chest 129:174–181PubMedCrossRefGoogle Scholar
  15. 15.
    Fiore JJ, Browning L, Bialocerkowski A, Gruen R, Faragher I, Denehy L (2012) Hospital discharge criteria following colorectal surgery: a systematic review. Colorectal Dis 14:270–281PubMedCrossRefGoogle Scholar
  16. 16.
    Gustafsson U, Scott M, Schwenk W et al (2012) Guidelines for perioperative care in elective colonic surgery: enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Clin Nutr 31:783–800PubMedCrossRefGoogle Scholar
  17. 17.
    Adamina M, Kehlet H, Tomlinson G, Senagore A, Delaney C (2011) Enhanced recovery pathways optimize health outcomes and resource utilization: a meta-analysis of randomized controlled trials in colorectal surgery. Surgery 149:830–840PubMedCrossRefGoogle Scholar
  18. 18.
    Fearon K, Ljungqvist O, Von Meyenfeldt M et al (2005) Enhanced recovery after surgery: a consensus review of clinical care for patients undergoing colonic resection. Clin Nutr 24:466–477PubMedCrossRefGoogle Scholar
  19. 19.
    Kehlet H, Wilmore D (2002) Multimodal strategies to improve surgical outcome. Am J Surg 183:630–641PubMedCrossRefGoogle Scholar
  20. 20.
    Kehlet H, Wilmore D (2008) Evidence-based surgical care and the evolution of fast-track surgery. Ann Surg 248:189–198PubMedCrossRefGoogle Scholar
  21. 21.
    Delaney C, Zutshi M, Senagore A, Remzi F, Hammel J, Fazio V (2003) Prospective, randomized, controlled trial between a pathway of controlled rehabilitation with early ambulation and diet and traditional postoperative care after laparotomy and intestinal resection. Dis Colon Rectum 46:851–859PubMedCrossRefGoogle Scholar
  22. 22.
    Emmanuel A, Ellul J (2015) Early discharge within 72 hours of elective colorectal cancer resections using simple discharge criteria is safe and effective. Gut 64:A332–A333CrossRefGoogle Scholar
  23. 23.
    Alvarez M, Foley K, Zebley D, Fassler S (2015) Comprehensive enhanced recovery pathway significantly reduces postoperative length of stay and opioid usage in elective laparoscopic colectomy. Surg Endosc 29:2506–2511PubMedCrossRefGoogle Scholar
  24. 24.
    Chand M, De’Ath H, Rasheed S, Mehta C, Bromilow J, Qureshi T (2016) The influence of peri-operative factors for accelerated discharge following laparoscopic colorectal surgery when combined with an enhanced recovery after surgery (ERAS) pathway. Int J Surg 25:59–63PubMedCrossRefGoogle Scholar
  25. 25.
    Gash K, Goede A, Chambers W, Greenslade G, Dixon A (2011) Laparoendoscopic single-site surgery is feasible in complex colorectal resections and could enable day case colectomy. Surg Endosc 25:835–840PubMedCrossRefGoogle Scholar
  26. 26.
    Joh Y, Lindsetmo R, Stulberg J, Obias V, Champagne B, Delaney C (2008) Standardized postoperative pathway: accelerating recovery after ileostomy closure. Dis Colon Rectum 51:1786–1789PubMedCrossRefGoogle Scholar
  27. 27.
    Lawrence J, Keller D, Samia H et al (2013) Discharge within 24 to 72 hours of colorectal surgery is associated with low readmission rates when using enhanced recovery pathways. J Am Coll Surg 216:390–394PubMedCrossRefGoogle Scholar
  28. 28.
    Gash K, Greenslade G, Dixon A (2012) Enhanced recovery after laparoscopic colorectal resection with primary anastomosis: accelerated discharge is safe and does not give rise to increased readmission rates. Colorectal Dis 14:1287–1290PubMedCrossRefGoogle Scholar
  29. 29.
    Schwenk W, Gunther N, Wendling P et al (2008) “Fast-track” rehabilitation for elective colonic surgery in Germany–prospective observational data from a multi-centre quality assurance programme. Int J Colorectal Dis 23:93–99PubMedCrossRefGoogle Scholar
  30. 30.
    Christensen H, Thaysen H, Rodt S, Carlsson P, Laurberg S (2011) Short hospital stay and low complication rate are possible with a fully implemented fast-track model after elective colonic surgery. Eur Surg Res 46:156–161PubMedCrossRefGoogle Scholar
  31. 31.
    Delaney C, Fazio V, Senagore A, Robinson B, Halverson A, Remzi F (2001) ‘Fast track’ postoperative management protocol for patients with high co-morbidity undergoing complex abdominal and pelvic colorectal surgery. Br J Surg 88:1533–1538PubMedCrossRefGoogle Scholar
  32. 32.
    Delaney C (2008) Outcome of discharge within 24 to 72 hours after laparoscopic colorectal surgery. Dis Colon Rectum 51:181–185PubMedCrossRefGoogle Scholar
  33. 33.
    Delaney C, Brady K, Woconish D, Parmar S, Champagne B (2012) Towards optimizing perioperative colorectal care: outcomes for 1000 consecutive laparoscopic colon procedures using enhanced recovery pathways. Am J Surg 203:353–355 discussion 355–356 PubMedCrossRefGoogle Scholar
  34. 34.
    Keller D, Tahilramani R, Flores-Gonzalez J, Ibarra S, Haas E (2016) Pilot study of a novel pain management strategy: evaluating the impact on patient outcomes. Surg Endosc 30:2192–2198PubMedCrossRefGoogle Scholar
  35. 35.
    Miller T, Thacker J, White W et al (2014) Reduced length of hospital stay in colorectal surgery after implementation of an enhanced recovery protocol. Anesth Analg 118:1052–1061PubMedCrossRefGoogle Scholar
  36. 36.
    Rawlinson A, Kang P, Evans J, Khanna A (2011) A systematic review of enhanced recovery protocols in colorectal surgery. Ann R Coll Surg Engl 93:583–588PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Neville A, Lee L, Antonescu I et al (2014) Systematic review of outcomes used to evaluate enhanced recovery after surgery. Br J Surg 101:159–170PubMedCrossRefGoogle Scholar
  38. 38.
    Khoo C, Vickery C, Forsyth N, Vinall N, Eyre-Brook I (2007) A prospective randomized controlled trial of multimodal perioperative management protocol in patients undergoing elective colorectal resection for cancer. Ann Surg 245:867–872PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ihedioha U, Vaughan S, Mastermann J, Singh B, Chaudhri S (2013) Patient education videos for elective colorectal surgery: results of a randomized controlled trial. Colorectal Dis 15:1436–1441PubMedCrossRefGoogle Scholar
  40. 40.
    El-Sheikh S, El-Sayed S, Mostafa A, Hussein H (2010) Enhanced recovery program safely improves the outcome of elective colorectal surgery. Egypt J Anaesth 26(3):229–239Google Scholar
  41. 41.
    Forsmo H, Pfeffer F, Rasdal A et al (2016) Compliance with enhanced recovery after surgery criteria and preoperative and postoperative counselling reduces length of hospital stay in colorectal surgery: results of a randomized controlled trial. Colorectal Dis 18:603–611PubMedCrossRefGoogle Scholar
  42. 42.
    Pedziwiatr M, Kisialeuski M, Wierdak M et al (2015) Early implementation of Enhanced Recovery After Surgery (ERAS(R)) protocol—compliance improves outcomes: a prospective cohort study. Int J Surg 21:75–81PubMedCrossRefGoogle Scholar
  43. 43.
    Wolk S, Distler M, Mussle B, Sothje S, Weitz J, Welsch T (2016) Adherence to ERAS elements in major visceral surgery-an observational pilot study. Langenbecks Arch Surg 401:349–356PubMedCrossRefGoogle Scholar
  44. 44.
    Nelson G, Kiyang L, Crumley E et al (2016) Implementation of Enhanced Recovery After Surgery (ERAS) Across A Provincial Healthcare System: the ERAS Alberta colorectal surgery experience. World J Surg 40:1092–1103PubMedCrossRefGoogle Scholar
  45. 45.
    Francis N, Mason J, Salib E et al (2015) Factors predicting 30-day readmission after laparoscopic colorectal cancer surgery within an enhanced recovery programme. Colorectal Dis 17:O148–O154PubMedCrossRefGoogle Scholar
  46. 46.
    Simpson J, Moonesinghe S, Grocott M et al (2015) Enhanced recovery from surgery in the UK: an audit of the enhanced recovery partnership programme 2009–2012. Br J Anaesth 115:560–568PubMedCrossRefGoogle Scholar
  47. 47.
    Fiore JJ, Faragher I, Bialocerkowski A, Browning L, Denehy L (2013) Time to readiness for discharge is a valid and reliable measure of short-term recovery after colorectal surgery. World J Surg 37:2927–2934PubMedCrossRefGoogle Scholar
  48. 48.
    Maessen J, Dejong C, Hausel J et al (2007) A protocol is not enough to implement an enhanced recovery programme for colorectal resection. Br J Surg 94:224–231PubMedCrossRefGoogle Scholar
  49. 49.
    Maessen J, Dejong C, Kessels A, von Meyenfeldt M (2008) Length of stay: an inappropriate readout of the success of enhanced recovery programs. World J Surg 32:971–975PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Chaudhri S, Brown L, Hassan I, Horgan A (2005) Preoperative intensive, community-based vs. traditional stoma education: a randomized, controlled trial. Dis Colon Rectum 48:504–509PubMedCrossRefGoogle Scholar
  51. 51.
    Cartmell M, Jones O, Moran B, Cecil T (2008) A defunctioning stoma significantly prolongs the length of stay in laparoscopic colorectal resection. Surg Endosc 22:2643–2647PubMedCrossRefGoogle Scholar
  52. 52.
    Ulrich A, Seiler C, Rahbari N, Weitz J, Buchler M (2009) Diverting stoma after low anterior resection: more arguments in favor. Dis Colon Rectum 52:412–418PubMedCrossRefGoogle Scholar
  53. 53.
    King P, Blazeby J, Ewings P et al (2006) The influence of an enhanced recovery programme on clinical outcomes, costs and quality of life after surgery for colorectal cancer. Colorectal Dis 8:506–513PubMedCrossRefGoogle Scholar
  54. 54.
    Danielsen A, Burcharth J, Rosenberg J (2013) Patient education has a positive effect in patients with a stoma: a systematic review. Colorectal Dis 15:e276–e283PubMedCrossRefGoogle Scholar
  55. 55.
    Altuntas Y, Kement M, Gezen C et al (2012) The role of group education on quality of life in patients with a stoma. Eur J Cancer Care 21:776–781CrossRefGoogle Scholar
  56. 56.
    Danielsen A, Rosenberg J (2014) Health related quality of life may increase when patients with a stoma attend patient education–a case-control study. PLoS ONE 9:e90354PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Bass E, Del Pino A, Tan A, Pearl R, Orsay C, Abcarian H (1997) Does preoperative stoma marking and education by the enterostomal therapist affect outcome? Dis Colon Rectum 40:440–442PubMedCrossRefGoogle Scholar
  58. 58.
    Person B, Ifargan R, Lachter J, Duek S, Kluger Y, Assalia A (2012) The impact of preoperative stoma site marking on the incidence of complications, quality of life, and patient’s independence. Dis Colon Rectum 55:783–787PubMedCrossRefGoogle Scholar
  59. 59.
    McKenna L, Taggart E, Stoelting J, Kirkbride G, Forbes G (2016) The impact of preoperative stoma marking on health-related quality of life: a comparison cohort study. J Wound Ostomy Cont Nurs 43:57–61CrossRefGoogle Scholar
  60. 60.
    Baykara Z, Demir S, Karadag A et al (2014) A multicenter, retrospective study to evaluate the effect of preoperative stoma site marking on stomal and peristomal complications. Ostomy Wound Manag 60:16–26Google Scholar
  61. 61.
    Millan M, Tegido M, Biondo S, Garcia-Granero E (2010) Preoperative stoma siting and education by stomatherapists of colorectal cancer patients: a descriptive study in twelve Spanish colorectal surgical units. Colorectal Dis 12:e88–e92PubMedGoogle Scholar
  62. 62.
    Younis J, Salerno G, Fanto D, Hadjipavlou M, Chellar D, Trickett J (2012) Focused preoperative patient stoma education, prior to ileostomy formation after anterior resection, contributes to a reduction in delayed discharge within the enhanced recovery programme. Int J Colorectal Dis 27:43–47PubMedCrossRefGoogle Scholar
  63. 63.
    Messaris E, Sehgal R, Deiling S et al (2012) Dehydration is the most common indication for readmission after diverting ileostomy creation. Dis Colon Rectum 55:175–180PubMedCrossRefGoogle Scholar
  64. 64.
    Hayden D, Pinzon M, Francescatti A et al (2013) Hospital readmission for fluid and electrolyte abnormalities following ileostomy construction: preventable or unpredictable? J Gastrointest Surg 17:298–303PubMedCrossRefGoogle Scholar
  65. 65.
    Halverson A, Sellers M, Bilimoria K et al (2014) Identification of process measures to reduce postoperative readmission. J Gastrointest Surg 18:1407–1415PubMedCrossRefGoogle Scholar
  66. 66.
    American Society of Anesthesiologists C (2011) Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: application to healthy patients undergoing elective procedures: an updated report by the American Society of Anesthesiologists Committee on Standards and Practice Parameters. Anesthesiology 114:495–511CrossRefGoogle Scholar
  67. 67.
    Maltby JR, Sutherland AD, Sale JP, Shaffer EA (1986) Preoperative oral fluids: is a five-hour fast justified prior to elective surgery? Anesth Analg 65:1112–1116PubMedCrossRefGoogle Scholar
  68. 68.
    Sutherland AD, Maltby JR, Sale JP, Reid CR (1987) The effect of preoperative oral fluid and ranitidine on gastric fluid volume and pH. Can J Anaesth 34:117–121PubMedCrossRefGoogle Scholar
  69. 69.
    Hutchinson A, Maltby JR, Reid CR (1988) Gastric fluid volume and pH in elective inpatients. Part I: coffee or orange juice versus overnight fast. Can J Anaesth 35:12–15PubMedCrossRefGoogle Scholar
  70. 70.
    McGrady EM, Macdonald AG (1988) Effect of the preoperative administration of water on gastric volume and pH. Br J Anaesth 60:803–805PubMedCrossRefGoogle Scholar
  71. 71.
    Agarwal A, Chari P, Singh H (1989) Fluid deprivation before operation. The effect of a small drink. Anaesthesia 44:632–634PubMedCrossRefGoogle Scholar
  72. 72.
    Read MS, Vaughan RS (1991) Allowing pre-operative patients to drink: effects on patients’ safety and comfort of unlimited oral water until 2 hours before anaesthesia. Acta Anaesthesiol Scand 35:591–595PubMedCrossRefGoogle Scholar
  73. 73.
    Phillips S, Hutchinson S, Davidson T (1993) Preoperative drinking does not affect gastric contents. Br J Anaesth 70:6–9PubMedCrossRefGoogle Scholar
  74. 74.
    Yagci G, Can MF, Ozturk E et al (2008) Effects of preoperative carbohydrate loading on glucose metabolism and gastric contents in patients undergoing moderate surgery: a randomized, controlled trial. Nutrition 24:212–216PubMedCrossRefGoogle Scholar
  75. 75.
    Smith I, Kranke P, Murat I et al (2011) Perioperative fasting in adults and children: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol 28:556–569PubMedCrossRefGoogle Scholar
  76. 76.
    Smith MD, McCall J, Plank L, Herbison GP, Soop M, Nygren J (2014) Preoperative carbohydrate treatment for enhancing recovery after elective surgery. Cochrane Database Syst Rev 8:CD009161Google Scholar
  77. 77.
    Awad S, Varadhan KK, Ljungqvist O, Lobo DN (2013) A meta-analysis of randomised controlled trials on preoperative oral carbohydrate treatment in elective surgery. Clin Nutr 32:34–44PubMedCrossRefGoogle Scholar
  78. 78.
    Amer MA, Smith MD, Herbison GP, Plank LD, McCall JL (2016) Network meta-analysis of the effect of preoperative carbohydrate loading on recovery after elective surgery. Br J Surg. doi: 10.1002/bjs.10408 PubMedGoogle Scholar
  79. 79.
    Guenaga KF, Matos D, Wille-Jorgensen P (2011) Mechanical bowel preparation for elective colorectal surgery. Cochrane Database Syst Rev 9:CD001544Google Scholar
  80. 80.
    Chen M, Song X, Chen LZ, Lin ZD, Zhang XL (2016) Comparing mechanical bowel preparation with both oral and systemic antibiotics versus mechanical bowel preparation and systemic antibiotics alone for the prevention of surgical site infection after elective colorectal surgery: a meta-analysis of randomized controlled clinical trials. Dis Colon Rectum 59:70–78PubMedCrossRefGoogle Scholar
  81. 81.
    Moghadamyeghaneh Z, Hwang GS, Hanna MH et al (2015) Surgical site infection impact of pelvic exenteration procedure. J Surg Oncol 12(5):533–537CrossRefGoogle Scholar
  82. 82.
    Toneva GD, Deierhoi RJ, Morris M et al (2013) Oral antibiotic bowel preparation reduces length of stay and readmissions after colorectal surgery. J Am Coll Surg 216:756–762. (discussion 762–753)PubMedCrossRefGoogle Scholar
  83. 83.
    Mik M, Berut M, Trzcinski R, Dziki L, Buczynski J, Dziki A (2016) Preoperative oral antibiotics reduce infections after colorectal cancer surgery. Langenbecks Arch Surg 401:1153–1162PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Kim EK, Sheetz KH, Bonn J et al (2014) A statewide colectomy experience: the role of full bowel preparation in preventing surgical site infection. Ann Surg 259:310–314PubMedCrossRefGoogle Scholar
  85. 85.
    Keenan JE, Speicher PJ, Thacker JK, Walter M, Kuchibhatla M, Mantyh CR (2014) The preventive surgical site infection bundle in colorectal surgery: an effective approach to surgical site infection reduction and health care cost savings. JAMA Surg 149:1045–1052PubMedCrossRefGoogle Scholar
  86. 86.
    Bruns ER, van den Heuvel B, Buskens CJ et al (2016) The effects of physical prehabilitation in elderly patients undergoing colorectal surgery: a systematic review. Colorectal Dis 18:O267–O277PubMedCrossRefGoogle Scholar
  87. 87.
    Le Roy B, Selvy M, Slim K (2016) The concept of prehabilitation: what the surgeon needs to know? J Visc Surg 153:109–112PubMedCrossRefGoogle Scholar
  88. 88.
    Carli F, Zavorsky GS (2005) Optimizing functional exercise capacity in the elderly surgical population. Curr Opin Clin Nutr Metab Care 8:23–32PubMedCrossRefGoogle Scholar
  89. 89.
    Cabilan CJ, Hines S, Munday J (2016) the impact of prehabilitation on postoperative functional status, healthcare utilization, pain, and quality of life: a systematic review. Orthop Nurs 35:224–237PubMedCrossRefGoogle Scholar
  90. 90.
    Francis N, Luther A, Gullick G (2015) Prehabilitation programmes in patients undergoing abdominal surgery within enhanced recovery: a systematic review. Gut 64:A180–A181. http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/447/CN-01098447/frame.html
  91. 91.
    Bourke L, Thompson G, Gibson DJ et al (2011) Pragmatic lifestyle intervention in patients recovering from colon cancer: a randomized controlled pilot study. Arch Phys Med Rehabil 92:749–755PubMedCrossRefGoogle Scholar
  92. 92.
    Courneya KS, Friedenreich CM, Quinney HA, Fields AL, Jones LW, Fairey AS (2003) A randomized trial of exercise and quality of life in colorectal cancer survivors. Eur J Cancer Care 12:347–357CrossRefGoogle Scholar
  93. 93.
    Cramer H, Lauche R, Klose P, Dobos G, Langhorst J (2014) A systematic review and meta-analysis of exercise interventions for colorectal cancer patients. Eur J Cancer Care 23:3–14CrossRefGoogle Scholar
  94. 94.
    Pinto BM, Papandonatos GD, Goldstein MG, Marcus BH, Farrell N (2013) Home-based physical activity intervention for colorectal cancer survivors. Psychooncology 22:54–64PubMedCrossRefGoogle Scholar
  95. 95.
    Pouwels S, Stokmans RA, Willigendael EM et al (2014) Preoperative exercise therapy for elective major abdominal surgery: a systematic review. Int J Surg 12:134–140PubMedCrossRefGoogle Scholar
  96. 96.
    Pouwels S, Hageman D, Gommans LN et al (2016) Preoperative exercise therapy in surgical care: a scoping review. J Clin Anesth 33:476–490PubMedCrossRefGoogle Scholar
  97. 97.
    Santa Mina D, Clarke H, Ritvo P et al (2014) Effect of total-body prehabilitation on postoperative outcomes: a systematic review and meta-analysis. Physiotherapy 100:196–207PubMedCrossRefGoogle Scholar
  98. 98.
    Valkenet K, van de Port IG, Dronkers JJ, de Vries WR, Lindeman E, Backx FJ (2011) The effects of preoperative exercise therapy on postoperative outcome: a systematic review. Clin Rehabil 25:99–111PubMedCrossRefGoogle Scholar
  99. 99.
    Mayo NE, Feldman L, Scott S et al (2011) Impact of preoperative change in physical function on postoperative recovery: argument supporting prehabilitation for colorectal surgery. Surgery 150:505–514PubMedCrossRefGoogle Scholar
  100. 100.
    Carli F, Charlebois P, Stein B et al (2010) Randomized clinical trial of prehabilitation in colorectal surgery. Br J Surg 97:1187–1197PubMedCrossRefGoogle Scholar
  101. 101.
    Chen BP, Awasthi R, Sweet SN et al (2017) Four-week prehabilitation program is sufficient to modify exercise behaviors and improve preoperative functional walking capacity in patients with colorectal cancer. Support Care Cancer 25:33–40PubMedCrossRefGoogle Scholar
  102. 102.
    Dronkers JJ, Lamberts H, Reutelingsperger IM et al (2010) Preoperative therapeutic programme for elderly patients scheduled for elective abdominal oncological surgery: a randomized controlled pilot study. Clin Rehabil 24:614–622PubMedCrossRefGoogle Scholar
  103. 103.
    Gillis C, Li C, Lee L et al (2014) Prehabilitation versus rehabilitation: a randomized control trial in patients undergoing colorectal resection for cancer. Anesthesiology 121:937–947PubMedCrossRefGoogle Scholar
  104. 104.
    Kim DJ, Mayo NE, Carli F, Montgomery DL, Zavorsky GS (2009) Responsive measures to prehabilitation in patients undergoing bowel resection surgery. Tohoku J Exp Med 217:109–115PubMedCrossRefGoogle Scholar
  105. 105.
    West MA, Loughney L, Lythgoe D et al (2015) Effect of prehabilitation on objectively measured physical fitness after neoadjuvant treatment in preoperative rectal cancer patients: a blinded interventional pilot study. Br J Anaesth 114:244–251PubMedCrossRefGoogle Scholar
  106. 106.
    Minnella EM, Awasthi R, Gillis C et al (2016) Patients with poor baseline walking capacity are most likely to improve their functional status with multimodal prehabilitation. Surgery 160:1070–1079PubMedCrossRefGoogle Scholar
  107. 107.
    Valkenet K, Trappenburg JC, Schippers CC et al (2016) Feasibility of exercise training in cancer patients scheduled for elective gastrointestinal surgery. Dig Surg 33:439–447PubMedCrossRefGoogle Scholar
  108. 108.
    Timmerman H, de Groot JF, Hulzebos HJ, de Knikker R, Kerkkamp HE, van Meeteren NL (2011) Feasibility and preliminary effectiveness of preoperative therapeutic exercise in patients with cancer: a pragmatic study. Physiother Theory Pract 27:117–124PubMedCrossRefGoogle Scholar
  109. 109.
    Li C, Carli F, Lee L et al (2013) Impact of a trimodal prehabilitation program on functional recovery after colorectal cancer surgery: a pilot study. Surg Endosc 27:1072–1082PubMedCrossRefGoogle Scholar
  110. 110.
    Burke SM, Brunet J, Sabiston CM, Jack S, Grocott MP, West MA (2013) Patients’ perceptions of quality of life during active treatment for locally advanced rectal cancer: the importance of preoperative exercise. Support Care Cancer 21:3345–3353PubMedCrossRefGoogle Scholar
  111. 111.
    Boereboom C, Doleman B, Lund JN, Williams JP (2016) Systematic review of pre-operative exercise in colorectal cancer patients. Tech Coloproctol 20:81–89PubMedCrossRefGoogle Scholar
  112. 112.
    Li C, Ferri LE, Mulder DS et al (2012) An enhanced recovery pathway decreases duration of stay after esophagectomy. Surgery 152:606–614PubMedCrossRefGoogle Scholar
  113. 113.
    Carter F, Kennedy RH (2012) Setting up an enhanced recovery programme. In: Francis N (ed) Manual of fast-track recovery for colorectal surgery. Springer, London, pp 131–142CrossRefGoogle Scholar
  114. 114.
    Group EC (2015) The impact of enhanced recovery protocol compliance on elective colorectal cancer resection: results from an international registry. Ann Surg 261:1153–1159CrossRefGoogle Scholar
  115. 115.
    Ahmed J, Khan S, Gatt M, Kallam R, MacFie J (2010) Compliance with enhanced recovery programmes in elective colorectal surgery. Br J Surg 97:754–758PubMedCrossRefGoogle Scholar
  116. 116.
    Tanner J, Padley W, Assadian O, Leaper D, Kiernan M, Edmiston C (2015) Do surgical care bundles reduce the risk of surgical site infections in patients undergoing colorectal surgery? A systematic review and cohort meta-analysis of 8515 patients. Surgery 158:66–77PubMedCrossRefGoogle Scholar
  117. 117.
    Larson DW, Lovely JK, Cima RR et al (2014) Outcomes after implementation of a multimodal standard care pathway for laparoscopic colorectal surgery. Br J Surg 101:1023–1030PubMedCrossRefGoogle Scholar
  118. 118.
    Marret E, Kurdi O, Zufferey P, Bonnet F (2005) Effects of nonsteroidal antiinflammatory drugs on patient-controlled analgesia morphine side effects: meta-analysis of randomized controlled trials. Anesthesiology 102:1249–1260PubMedCrossRefGoogle Scholar
  119. 119.
    Remy C, Marret E, Bonnet F (2005) Effects of acetaminophen on morphine side-effects and consumption after major surgery: meta-analysis of randomized controlled trials. Br J Anaesth 94:505–513PubMedCrossRefGoogle Scholar
  120. 120.
    Aryaie A, Lalezari S, Sergent W et al (2015) Decreased narcotic consumption with the addition of IV-acetaminophen in colorectal patients: a prospective, randomized, double-blinded, placebo-controlled study. Dis Colon Rectum 58(5):e123Google Scholar
  121. 121.
    Maund E, McDaid C, Rice S, Wright K, Jenkins B, Woolacott N (2011) Paracetamol and selective and non-selective non-steroidal anti-inflammatory drugs for the reduction in morphine-related side-effects after major surgery: a systematic review. Br J Anaesth 106:292–297PubMedCrossRefGoogle Scholar
  122. 122.
    Apfel CC, Turan A, Souza K, Pergolizzi J, Hornuss C (2013) Intravenous acetaminophen reduces postoperative nausea and vomiting: a systematic review and meta-analysis. Pain 154:677–689PubMedCrossRefGoogle Scholar
  123. 123.
    Chen JY, Wu GJ, Mok MS et al (2005) Effect of adding ketorolac to intravenous morphine patient-controlled analgesia on bowel function in colorectal surgery patients–a prospective, randomized, double-blind study. Acta Anaesthesiol Scand 49:546–551PubMedCrossRefGoogle Scholar
  124. 124.
    Schlachta CM, Burpee SE, Fernandez C, Chan B, Mamazza J, Poulin EC (2007) Optimizing recovery after laparoscopic colon surgery (ORAL-CS): effect of intravenous ketorolac on length of hospital stay. Surg Endosc 21:2212–2219PubMedCrossRefGoogle Scholar
  125. 125.
    Chen JY, Ko TL, Wen YR et al (2009) Opioid-sparing effects of ketorolac and its correlation with the recovery of postoperative bowel function in colorectal surgery patients: a prospective randomized double-blinded study. Clin J Pain 25:485–489PubMedCrossRefGoogle Scholar
  126. 126.
    Wu CL, Rowlingson AJ, Partin AW et al (2005) Correlation of postoperative pain to quality of recovery in the immediate postoperative period. Reg Anesth Pain Med 30:516–522PubMedCrossRefGoogle Scholar
  127. 127.
    Bhangu A, Singh P, Fitzgerald JE, Slesser A, Tekkis P (2014) Postoperative nonsteroidal anti-inflammatory drugs and risk of anastomotic leak: meta-analysis of clinical and experimental studies. World J Surg 38:2247–2257PubMedCrossRefGoogle Scholar
  128. 128.
    Saleh F, Jackson TD, Ambrosini L et al (2014) Perioperative nonselective non-steroidal anti-inflammatory drugs are not associated with anastomotic leakage after colorectal surgery. J Gastrointest Surg 18:1398–1404PubMedCrossRefGoogle Scholar
  129. 129.
    Paulasir S, Kaoutzanis C, Welch KB et al (2015) Nonsteroidal anti-inflammatory drugs: do they increase the risk of anastomotic leaks following colorectal operations? Dis Colon Rectum 58:870–877PubMedCrossRefGoogle Scholar
  130. 130.
    Hakkarainen TW, Steele SR, Bastaworous A et al (2015) Nonsteroidal anti-inflammatory drugs and the risk for anastomotic failure: a report from Washington State’s Surgical Care and Outcomes Assessment Program (SCOAP). [Erratum appears in JAMA Surg. 2015 May;150(5):492; PMID: 25992954]. JAMA Surg 150:223–228PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Klein M (2012) Postoperative non-steroidal anti-inflammatory drugs and colorectal anastomotic leakage. NSAIDs and anastomotic leakage. Dan Med J 59:B4420PubMedGoogle Scholar
  132. 132.
    Gorissen KJ, Benning D, Berghmans T et al (2012) Risk of anastomotic leakage with non-steroidal anti-inflammatory drugs in colorectal surgery. Br J Surg 99:721–727PubMedCrossRefGoogle Scholar
  133. 133.
    Burton TP, Mittal A, Soop M (2013) Nonsteroidal anti-inflammatory drugs and anastomotic dehiscence in bowel surgery: systematic review and meta-analysis of randomized, controlled trials. Dis Colon Rectum 56:126–134PubMedCrossRefGoogle Scholar
  134. 134.
    Nussmeier NA, Whelton AA, Brown MT et al (2006) Safety and efficacy of the cyclooxygenase-2 inhibitors parecoxib and valdecoxib after noncardiac surgery. Anesthesiology 104:518–526PubMedCrossRefGoogle Scholar
  135. 135.
    Mathiesen O, Wetterslev J, Kontinen VK et al (2014) Adverse effects of perioperative paracetamol, NSAIDs, glucocorticoids, gabapentinoids and their combinations: a topical review. Acta Anaesthesiol Scand 58:1182–1198PubMedCrossRefGoogle Scholar
  136. 136.
    Eipe N, Penning J, Yazdi F et al (2015) Perioperative use of pregabalin for acute pain-a systematic review and meta-analysis. Pain 156:1284–1300PubMedCrossRefGoogle Scholar
  137. 137.
    Bell RF, Dahl JB, Moore RA, Kalso E (2015) Perioperative ketamine for acute postoperative pain. Cochrane Database Syst Rev 2006:CD004603Google Scholar
  138. 138.
    Lavand’homme P, De Kock M, Waterloos H (2005) Intraoperative epidural analgesia combined with ketamine provides effective preventive analgesia in patients undergoing major digestive surgery. Anesthesiology 103:813–820PubMedCrossRefGoogle Scholar
  139. 139.
    Cheung CW, Qiu Q, Ying ACL, Choi SW, Law WL, Irwin MG (2014) The effects of intra-operative dexmedetomidine on postoperative pain, side-effects and recovery in colorectal surgery. Anaesthesia 69:1214–1221PubMedCrossRefGoogle Scholar
  140. 140.
    Ge DJ, Qi B, Tang G, Li JY (2015) Intraoperative dexmedetomidine promotes postoperative analgesia in patients after abdominal colectomy: a consort-prospective, randomized, controlled clinical trial. Medicine 94:e1514PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    De Kock M, Lavandhomme P, Scholtes JL (1994) Intraoperative and postoperative analgesia using intravenous opioid, clonidine and lignocaine. Anaesth Intensive Care 22:15–21PubMedGoogle Scholar
  142. 142.
    McKay WP, Donais P (2007) Bowel function after bowel surgery: morphine with ketamine or placebo; a randomized controlled trial pilot study. Acta Anaesthesiol Scand 51:1166–1171PubMedGoogle Scholar
  143. 143.
    Vignali A, Di Palo S, Orsenigo E, Ghirardelli L, Radaelli G, Staudacher C (2009) Effect of prednisolone on local and systemic response in laparoscopic vs. open colon surgery: a randomized, double-blind, placebo-controlled trial. Dis Colon Rectum 52:1080–1088PubMedCrossRefGoogle Scholar
  144. 144.
    Waldron NH, Jones CA, Gan TJ, Allen TK, Habib AS (2013) Impact of perioperative dexamethasone on postoperative analgesia and side-effects: systematic review and meta-analysis. Br J Anaesth 110:191–200PubMedCrossRefGoogle Scholar
  145. 145.
    Schulze S, Andersen J, Overgaard H, et al (1997) Effect of prednisolone on the systemic response and wound healing after colonic surgery. Arch Surg 132(2):129–135. http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/907/CN-00136907/frame.html
  146. 146.
    Schulze S, Sommer P, Bigler D et al (1992) Effect of combined prednisolone, epidural analgesia, and indomethacin on the systemic response after colonic surgery. Arch Surg 127:325–331PubMedCrossRefGoogle Scholar
  147. 147.
    Keller DS, Tahilramani RN, Flores-Gonzalez JR, Ibarra S, Haas EM (2015) Pilot study of a novel pain management strategy: evaluating the impact on patient outcomes. Surg EndoscGoogle Scholar
  148. 148.
    Hamilton TW, Athanassoglou V, Trivella M, et al (2016) Liposomal bupivacaine peripheral nerve block for the management of postoperative pain. Cochrane Database Syst Rev CD011476Google Scholar
  149. 149.
    Candiotti K, Sands L, Lee E, et al (2014) Liposome bupivacaine for postsurgical analgesia in adult patients undergoing laparoscopic colectomy: results from prospective phase IV sequential cohort studies assessing health economic outcomes (Provisional abstract). Curr Ther Res 76(2):1–6. http://onlinelibrary.wiley.com/o/cochrane/cleed/articles/NHSEED-22014030383/frame.html
  150. 150.
    Cohen SM (2012) Extended pain relief trial utilizing infiltration of Exparel, a long-acting multivesicular liposome formulation of bupivacaine: a Phase IV health economic trial in adult patients undergoing open colectomy. J Pain Res 5:567–572PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Favuzza J, Brady K, Delaney CP (2013) Transversus abdominis plane blocks and enhanced recovery pathways: making the 23-h hospital stay a realistic goal after laparoscopic colorectal surgery. Surg Endosc 27:2481–2486PubMedCrossRefGoogle Scholar
  152. 152.
    De Oliveira GS Jr, Castro-Alves LJ, Nader A, Kendall MC, McCarthy RJ (2014) Transversus abdominis plane block to ameliorate postoperative pain outcomes after laparoscopic surgery: a meta-analysis of randomized controlled trials. Anesth Analg 118:454–463PubMedCrossRefGoogle Scholar
  153. 153.
    Lee LH, Irwin MG, Yao TJ, Yuen MK, Cheung CW (2008) Timing of intraoperative parecoxib analgesia in colorectal surgery. Acute Pain 10:123–130CrossRefGoogle Scholar
  154. 154.
    Nistal-Nuno B, Freire-Vila E, Castro-Seoane F, Camba-Rodriguez M (2014) Preoperative low-dose ketamine has no preemptive analgesic effect in opioid-naive patients undergoing colon surgery when nitrous oxide is used—a randomized study. F1000Res 3:226PubMedPubMedCentralGoogle Scholar
  155. 155.
    Pandazi A, Kapota E, Matsota P, Paraskevopoulou P, Dervenis C, Kostopanagiotou G (2010) Preincisional versus postincisional administration of parecoxib in colorectal surgery: effect on postoperative pain control and cytokine response. A randomized clinical trial. World J Surg 34:2463–2469PubMedCrossRefGoogle Scholar
  156. 156.
    Park YH, Kang H, Woo YC et al (2011) The effect of intraperitoneal ropivacaine on pain after laparoscopic colectomy: a prospective randomized controlled trial. J Surg Res 171(1):94–100PubMedCrossRefGoogle Scholar
  157. 157.
    Sim R, Cheong DM, Wong KS, Lee BMK, Liew QY (2007) Prospective randomized, double-blind, placebo-controlled study of pre- and postoperative administration of a COX-2-specific inhibitor as opioid-sparing analgesia in major colorectal surgery. Colorectal Dis 9(1):52–60PubMedCrossRefGoogle Scholar
  158. 158.
    Wordliczek J, Banach M, Garlicki J, Jakowicka-Wordliczek J, Dobrogowski J (2002) Influence of pre- or intraoperational use of tramadol (preemptive or preventive analgesia) on tramadol requirement in the early postoperative period. Pol J Pharmacol 54:693–697PubMedGoogle Scholar
  159. 159.
    Ong CK, Lirk P, Seymour RA, Jenkins BJ (2005) The efficacy of preemptive analgesia for acute postoperative pain management: a meta-analysis. Anesth Analg. 100:757–773. (table of contents)PubMedCrossRefGoogle Scholar
  160. 160.
    Persec J, Bukovic D, Majeric-Kogler V, Sakic K, Persec Z, Kasum M (2007) Analysis of preincisional and postincisional treatment with alpha2-adrenoreceptor agonist clonidine regarding analgesic consumption and hemodynamic stability in surgical patients. Coll Antropol 31:1065–1070PubMedGoogle Scholar
  161. 161.
    Wu CT, Jao SW, Borel CO et al (2004) The effect of epidural clonidine on perioperative cytokine response, postoperative pain, and bowel function in patients undergoing colorectal surgery. Anesth Analg. 99:502–509. (table of contents)PubMedCrossRefGoogle Scholar
  162. 162.
    Werawatganon T, Charuluxanun S (2005) Patient controlled intravenous opioid analgesia versus continuous epidural analgesia for pain after intra-abdominal surgery. Cochrane Database Syst Rev CD004088Google Scholar
  163. 163.
    Block BM, Liu SS, Rowlingson AJ, Cowan AR, Cowan JA Jr, Wu CL (2003) Efficacy of postoperative epidural analgesia: a meta-analysis. JAMA 290:2455–2463PubMedCrossRefGoogle Scholar
  164. 164.
    Liu H, Hu X, Duan X, Wu J (2014) Thoracic epidural analgesia (TEA) vs. patient controlled analgesia (PCA) in laparoscopic colectomy: a meta-analysis. Hepatogastroenterology 61:1213–1219Google Scholar
  165. 165.
    Borzellino G, Francis NK, Chapuis O, Krastinova E, Dyevre V, Genna M (2016) Role of Epidural analgesia within an eras program after laparoscopic colorectal surgery: a review and meta-analysis of randomised controlled studies. Surg Res Pract 2016:7543684PubMedPubMedCentralGoogle Scholar
  166. 166.
    Halabi WJ, Kang CY, Nguyen VQ et al (2014) Epidural analgesia in laparoscopic colorectal surgery: a nationwide analysis of use and outcomes. JAMA Surg 149:130–136PubMedCrossRefGoogle Scholar
  167. 167.
    Hubner M, Blanc C, Roulin D, Winiker M, Gander S, Demartines N (2015) Randomized clinical trial on epidural versus patient-controlled analgesia for laparoscopic colorectal surgery within an enhanced recovery pathway. Ann Surg 261:648–653PubMedCrossRefGoogle Scholar
  168. 168.
    Levy BF, Scott MJ, Fawcett W, Fry C, Rockall TA (2011) Randomized clinical trial of epidural, spinal or patient-controlled analgesia for patients undergoing laparoscopic colorectal surgery. Br J Surg 98:1068–1078PubMedCrossRefGoogle Scholar
  169. 169.
    Popping DM, Elia N, Marret E, Remy C, Tramer MR (2008) Protective effects of epidural analgesia on pulmonary complications after abdominal and thoracic surgery: a meta-analysis. Arch Surg 143:990–999. (discussion 1000)PubMedCrossRefGoogle Scholar
  170. 170.
    Wongyingsinn M, Baldini G, Charlebois P, Liberman S, Stein B, Carli F (2011) Intravenous lidocaine versus thoracic epidural analgesia: a randomized controlled trial in patients undergoing laparoscopic colorectal surgery using an enhanced recovery program. Reg Anesth Pain Med 36:241–248PubMedCrossRefGoogle Scholar
  171. 171.
    Curatolo M, Petersen-Felix S, Scaramozzino P, Zbinden AM (1998) Epidural fentanyl, adrenaline and clonidine as adjuvants to local anaesthetics for surgical analgesia: meta-analyses of analgesia and side-effects. Acta Anaesthesiol Scand 42(8):910–920PubMedCrossRefGoogle Scholar
  172. 172.
    Rawal N, Allvin R (1996) Epidural and intrathecal opioids for postoperative pain management in Europe–a 17-nation questionnaire study of selected hospitals. Euro Pain Study Group on Acute Pain. Acta Anaesthesiol Scand 40:1119–1126PubMedCrossRefGoogle Scholar
  173. 173.
    Niemi G, Breivik H (2002) Epinephrine markedly improves thoracic epidural analgesia produced by a small-dose infusion of ropivacaine, fentanyl, and epinephrine after major thoracic or abdominal surgery: a randomized, double-blinded crossover study with and without epinephrine. Anesth Analg 94:1598–1605. (table of contents)PubMedGoogle Scholar
  174. 174.
    Niemi G, Breivik H (2003) The minimally effective concentration of adrenaline in a low-concentration thoracic epidural analgesic infusion of bupivacaine, fentanyl and adrenaline after major surgery. A randomized, double-blind, dose-finding study. Acta Anaesthesiol Scand 47:439–450PubMedCrossRefGoogle Scholar
  175. 175.
    Sakaguchi Y, Sakura S, Shinzawa M, Saito Y (2000) Does adrenaline improve epidural bupivacaine and fentanyl analgesia after abdominal surgery? Anaesth Intensive Care 28:522–526PubMedGoogle Scholar
  176. 176.
    Persec J, Persec Z, Husedzinovic I (2009) Postoperative pain and systemic inflammatory stress response after preoperative analgesia with clonidine or levobupivacaine: a randomized controlled trial. Wien Klin Wochenschr 121:558–563PubMedCrossRefGoogle Scholar
  177. 177.
    Hermanides J, Hollmann MW, Stevens MF, Lirk P (2012) Failed epidural: causes and management. Br J Anaesth 109:144–154PubMedCrossRefGoogle Scholar
  178. 178.
    Tran DQ, Van Zundert TC, Aliste J, Engsusophon P, Finlayson RJ (2016) Primary failure of thoracic epidural analgesia in training centers: the invisible elephant? Reg Anesth Pain Med 41:309–313PubMedCrossRefGoogle Scholar
  179. 179.
    Arnuntasupakul V, Van Zundert TC, Vijitpavan A et al (2016) A randomized comparison between conventional and waveform-confirmed loss of resistance for thoracic epidural blocks. Reg Anesth Pain Med 41:368–373PubMedCrossRefGoogle Scholar
  180. 180.
    Leurcharusmee P, Arnuntasupakul V, De La Garza DC et al (2015) Reliability of waveform analysis as an adjunct to loss of resistance for thoracic epidural blocks. Reg Anesth Pain Med 40:694–697PubMedCrossRefGoogle Scholar
  181. 181.
    Franck M, Radtke FM, Apfel CC et al (2010) Documentation of post-operative nausea and vomiting in routine clinical practice. J Int Med Res 38:1034–1041PubMedCrossRefGoogle Scholar
  182. 182.
    Hill RP, Lubarsky DA, Phillips-Bute B et al (2000) Cost-effectiveness of prophylactic antiemetic therapy with ondansetron, droperidol, or placebo. Anesthesiology 92:958–967PubMedCrossRefGoogle Scholar
  183. 183.
    Habib AS, White WD, Eubanks S, Pappas TN, Gan TJ (2004) A randomized comparison of a multimodal management strategy versus combination antiemetics for the prevention of postoperative nausea and vomiting. Anesth Analg 99:77–81PubMedCrossRefGoogle Scholar
  184. 184.
    Gan TJ, Diemunsch P, Habib AS et al (2014) Consensus guidelines for the management of postoperative nausea and vomiting. Anesth Analg 118:85–113PubMedCrossRefGoogle Scholar
  185. 185.
    Apfelbaum JL, Silverstein JH, Chung FF et al (2013) Practice guidelines for postanesthetic care: an updated report by the American Society of Anesthesiologists Task Force on Postanesthetic Care. Anesthesiology 118:291–307PubMedCrossRefGoogle Scholar
  186. 186.
    Apfel CC, Kranke P, Eberhart LH, Roos A, Roewer N (2002) Comparison of predictive models for postoperative nausea and vomiting. Br J Anaesth 88:234–240PubMedCrossRefGoogle Scholar
  187. 187.
    Eberhart LH, Morin AM (2011) Risk scores for predicting postoperative nausea and vomiting are clinically useful tools and should be used in every patient: con–’life is really simple, but we insist on making it complicated’. Eur J Anaesthesiol 28:155–159PubMedCrossRefGoogle Scholar
  188. 188.
    Kappen TH, Moons KG, van Wolfswinkel L, Kalkman CJ, Vergouwe Y, van Klei WA (2014) Impact of risk assessments on prophylactic antiemetic prescription and the incidence of postoperative nausea and vomiting: a cluster-randomized trial. Anesthesiology 120:343–354PubMedCrossRefGoogle Scholar
  189. 189.
    Kappen TH, Vergouwe Y, van Wolfswinkel L, Kalkman CJ, Moons KG, van Klei WA (2015) Impact of adding therapeutic recommendations to risk assessments from a prediction model for postoperative nausea and vomiting. Br J Anaesth 114:252–260PubMedCrossRefGoogle Scholar
  190. 190.
    Kolanek B, Svartz L, Robin F et al (2014) Management program decreases postoperative nausea and vomiting in high-risk and in general surgical patients: a quality improvement cycle. Minerva Anestesiol 80:337–346PubMedGoogle Scholar
  191. 191.
    Kooij FO, Vos N, Siebenga P, Klok T, Hollmann MW, Kal JE (2012) Automated reminders decrease postoperative nausea and vomiting incidence in a general surgical population. Br J Anaesth 108:961–965PubMedCrossRefGoogle Scholar
  192. 192.
    Mayeur C, Robin E, Kipnis E et al (2012) Impact of a prophylactic strategy on the incidence of nausea and vomiting after general surgery. Ann Fr Anesth Reanim 31:e53–e57PubMedCrossRefGoogle Scholar
  193. 193.
    White PF, O’Hara JF, Roberson CR, Wender RH, Candiotti KA (2008) The impact of current antiemetic practices on patient outcomes: a prospective study on high-risk patients. Anesth Analg 107:452–458PubMedCrossRefGoogle Scholar
  194. 194.
    McKenzie R, Tantisira B, Karambelkar DJ, Riley TJ, Abdelhady H (1994) Comparison of ondansetron with ondansetron plus dexamethasone in the prevention of postoperative nausea and vomiting. Anesth Analg 79:961–964PubMedCrossRefGoogle Scholar
  195. 195.
    Si XY, Wu LP, Li XD, Li B, Zhou YM (2015) Dexamethasone combined with other antiemetics for prophylaxis after laparoscopic cholecystectomy. Asian J Surg/Asian SurgAssoc 38:21–27CrossRefGoogle Scholar
  196. 196.
    Abdelmalak BB, Bonilla AM, Yang D et al (2013) The hyperglycemic response to major noncardiac surgery and the added effect of steroid administration in patients with and without diabetes. Anesth Analg 116:1116–1122PubMedCrossRefGoogle Scholar
  197. 197.
    Achuthan S, Singh I, Varthya SB, Srinivasan A, Chakrabarti A, Hota D (2015) Gabapentin prophylaxis for postoperative nausea and vomiting in abdominal surgeries: a quantitative analysis of evidence from randomized controlled clinical trials. Br J Anaesth 114:588–597PubMedCrossRefGoogle Scholar
  198. 198.
    Thacker JK, Mountford WK, Ernst FR, Krukas MR, Mythen MM (2015) Perioperative fluid utilization variability and association with outcomes: considerations for enhanced recovery efforts in sample US surgical populations. Ann SurgGoogle Scholar
  199. 199.
    Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M (2008) A rational approach to perioperative fluid management. Anesthesiology 109:723–740PubMedCrossRefGoogle Scholar
  200. 200.
    Varadhan KK, Lobo DN (2010) A meta-analysis of randomised controlled trials of intravenous fluid therapy in major elective open abdominal surgery: getting the balance right.[Erratum appears in Proc Nutr Soc. 2010 Nov;69(4):660]. Proc Nutr Soc 69:488–498PubMedCrossRefGoogle Scholar
  201. 201.
    Lamke LO, Nilsson GE, Reithner HL (1977) Water loss by evaporation from the abdominal cavity during surgery. Acta Chir Scand. 143:279–284PubMedGoogle Scholar
  202. 202.
    Egal M, de Geus HR, van Bommel J, Groeneveld AB (2016) Targeting oliguria reversal in perioperative restrictive fluid management does not influence the occurrence of renal dysfunction: a systematic review and meta-analysis. Eur J Anaesthesiol 33:425–435PubMedCrossRefGoogle Scholar
  203. 203.
    Egal M, Erler NS, de Geus HR, van Bommel J, Groeneveld AB (2016) Targeting oliguria reversal in goal-directed hemodynamic management does not reduce renal dysfunction in perioperative and critically ill patients: a systematic review and meta-analysis. Anesth Analg 122:173–185PubMedCrossRefGoogle Scholar
  204. 204.
    Holte K, Foss NB, Svensen C, Lund C, Madsen JL, Kehlet H (2004) Epidural anesthesia, hypotension, and changes in intravascular volume. Anesthesiology 100:281–286PubMedCrossRefGoogle Scholar
  205. 205.
    Gould TH, Grace K, Thorne G, Thomas M (2002) Effect of thoracic epidural anaesthesia on colonic blood flow. Br J Anaesth 89:446–451PubMedCrossRefGoogle Scholar
  206. 206.
    Mythen MG, Swart M, Acheson N et al (2012) Perioperative fluid management: consensus statement from the enhanced recovery partnership. Perioper Med 1:2CrossRefGoogle Scholar
  207. 207.
    Navarro LH, Bloomstone JA, Auler JO Jr et al (2015) Perioperative fluid therapy: a statement from the international Fluid Optimization Group. Perioper Med 4:3CrossRefGoogle Scholar
  208. 208.
    Brandstrup B, Tonnesen H, Beier-Holgersen R et al (2003) Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg 238(5):641–648PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Chowdhury AH, Cox EF, Francis ST, Lobo DN (2012) A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte(R) 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg 256:18–24PubMedCrossRefGoogle Scholar
  210. 210.
    Burdett E, Dushianthan A, Bennett-Guerrero E et al (2012) Perioperative buffered versus non-buffered fluid administration for surgery in adults. Cochrane Database Syst Rev 12:CD004089PubMedGoogle Scholar
  211. 211.
    McCluskey SA, Karkouti K, Wijeysundera D, Minkovich L, Tait G, Beattie WS (2013) Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: a propensity-matched cohort study. Anesth Analg 117:412–421PubMedCrossRefGoogle Scholar
  212. 212.
    Shaw AD, Bagshaw SM, Goldstein SL et al (2012) Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg 255:821–829PubMedCrossRefGoogle Scholar
  213. 213.
    Hamilton MA, Cecconi M, Rhodes A (2011) A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg 112:1392–1402PubMedCrossRefGoogle Scholar
  214. 214.
    Grocott MP, Dushianthan A, Hamilton MA et al (2013) Perioperative increase in global blood flow to explicit defined goals and outcomes after surgery: a Cochrane Systematic Review.[Reprint of Cochrane Database Syst Rev. 2012;11:cD004082; PMID: 23152223]. Br J Anaesth 111:535–548PubMedCrossRefGoogle Scholar
  215. 215.
    Cecconi M, Corredor C, Arulkumaran N et al (2013) Clinical review: goal-directed therapy-what is the evidence in surgical patients? The effect on different risk groups. Crit Care 17:209PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Benes J, Giglio M, Brienza N, Michard F (2014) The effects of goal-directed fluid therapy based on dynamic parameters on post-surgical outcome: a meta-analysis of randomized controlled trials. Crit Care 18:584PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94:1176–1186PubMedCrossRefGoogle Scholar
  218. 218.
    Srinivasa S, Taylor MH, Singh PP, Yu TC, Soop M, Hill AG (2013) Randomized clinical trial of goal-directed fluid therapy within an enhanced recovery protocol for elective colectomy. Br J Surg 100:66–74PubMedCrossRefGoogle Scholar
  219. 219.
    Brandstrup B, Svendsen PE, Rasmussen M et al (2012) Which goal for fluid therapy during colorectal surgery is followed by the best outcome: near-maximal stroke volume or zero fluid balance? Br J Anaesth 109:191–199PubMedCrossRefGoogle Scholar
  220. 220.
    Srinivasa S, Taylor MH, Singh PP, Lemanu DP, MacCormick AD, Hill AG (2014) Goal-directed fluid therapy in major elective rectal surgery. Int J Surg 12:1467–1472PubMedCrossRefGoogle Scholar
  221. 221.
    Pearse RM, Harrison DA, MacDonald N et al (2014) Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. [Erratum appears in JAMA. 2014 Oct 8;312(14):1473]. JAMA 311:2181–2190PubMedCrossRefGoogle Scholar
  222. 222.
    Senagore A, Emery T, Luchtefeld M et al (2009) Fluid management for laparoscopic colectomy: a prospective randomized assessment of goal directed administration of balanced salt solution or hetastarch coupled with an enhanced recovery program. Dis Colon Rectum 52(4):803Google Scholar
  223. 223.
    Yates DR, Davies SJ, Milner HE, Wilson RJ (2014) Crystalloid or colloid for goal-directed fluid therapy in colorectal surgery. Br J Anaesth 112:281–289PubMedCrossRefGoogle Scholar
  224. 224.
    Gillies MA, Habicher M, Jhanji S et al (2014) Incidence of postoperative death and acute kidney injury associated with i.v. 6% hydroxyethyl starch use: systematic review and meta-analysis. Br J Anaesth 112:25–34PubMedCrossRefGoogle Scholar
  225. 225.
    Raiman M, Mitchell CG, Biccard BM, Rodseth RN (2016) Comparison of hydroxyethyl starch colloids with crystalloids for surgical patients: a systematic review and meta-analysis. Eur J Anaesthesiol 33:42–48PubMedCrossRefGoogle Scholar
  226. 226.
    Qureshi SH, Rizvi SI, Patel NN, Murphy GJ (2016) Meta-analysis of colloids versus crystalloids in critically ill, trauma and surgical patients. Br J Surg 103:14–26PubMedCrossRefGoogle Scholar
  227. 227.
    Endo A, Uchino S, Iwai K et al (2012) Intraoperative hydroxyethyl starch 70/0.5 is not related to acute kidney injury in surgical patients: retrospective cohort study. Anesth Analg 115:1309–1314PubMedCrossRefGoogle Scholar
  228. 228.
    Hewett PJ, Allardyce RA, Bagshaw PF et al (2008) Short-term outcomes of the Australasian randomized clinical study comparing laparoscopic and conventional open surgical treatments for colon cancer: the ALCCaS trial. Ann Surg 248:728–738PubMedCrossRefGoogle Scholar
  229. 229.
    Veldkamp R, Kuhry E, Hop WC et al (2005) Laparoscopic surgery versus open surgery for colon cancer: short-term outcomes of a randomised trial. Lancet Oncol 6:477–484PubMedCrossRefGoogle Scholar
  230. 230.
    Braga M, Frasson M, Zuliani W, Vignali A, Pecorelli N, Di Carlo V (2010) Randomized clinical trial of laparoscopic versus open left colonic resection. Br J Surg 97:1180–1186PubMedCrossRefGoogle Scholar
  231. 231.
    Braga M, Vignali A, Gianotti L et al (2002) Laparoscopic versus open colorectal surgery: a randomized trial on short-term outcome. Ann Surg 236:759–766 disscussion 767 PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Lacy AM, Garcia-Valdecasas JC, Delgado S et al (2002) Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial. Lancet 359:2224–2229PubMedCrossRefGoogle Scholar
  233. 233.
    Yamamoto S, Inomata M, Katayama H et al (2014) Short-term surgical outcomes from a randomized controlled trial to evaluate laparoscopic and open D3 dissection for stage II/III colon cancer: japan Clinical Oncology Group Study JCOG 0404. Ann Surg 260:23–30PubMedCrossRefGoogle Scholar
  234. 234.
    Milsom JW, Bohm B, Hammerhofer KA, Fazio V, Steiger E, Elson P (1998) A prospective, randomized trial comparing laparoscopic versus conventional techniques in colorectal cancer surgery: a preliminary report. J Am Coll Surg 187:46–54 discussion 54–45 PubMedCrossRefGoogle Scholar
  235. 235.
    Stage JG, Schulze S, Moller P et al (1997) Prospective randomized study of laparoscopic versus open colonic resection for adenocarcinoma. Br J Surg 84:391–396PubMedCrossRefGoogle Scholar
  236. 236.
    Weeks JC, Nelson H, Gelber S, Sargent D, Schroeder G, Clinical Outcomes of Surgical Therapy Study G (2002) Short-term quality-of-life outcomes following laparoscopic-assisted colectomy vs open colectomy for colon cancer: a randomized trial. JAMA 287:321–328PubMedCrossRefGoogle Scholar
  237. 237.
    Guillou PJ, Quirke P, Thorpe H et al (2005) Short-term endpoints of conventional versus laparoscopic-assisted surgery in patients with colorectal cancer (MRC CLASICC trial): multicentre, randomised controlled trial. Lancet 365:1718–1726PubMedCrossRefGoogle Scholar
  238. 238.
    Bonjer HJ, Deijen CL, Abis GA et al (2015) A randomized trial of laparoscopic versus open surgery for rectal cancer. N Engl J Med 372:1324–1332PubMedCrossRefGoogle Scholar
  239. 239.
    van der Pas MH, Haglind E, Cuesta MA et al (2013) Laparoscopic versus open surgery for rectal cancer (COLOR II): short-term outcomes of a randomised, phase 3 trial. Lancet Oncol 14:210–218PubMedCrossRefGoogle Scholar
  240. 240.
    van der Pas MH, Haglind E, Cuesta MA, Furst A et al (2013) Laparoscopic versus open surgery for rectal cancer (COLOR II): short-term outcomes of a randomised, phase 3 trial. Lancet Oncol 14(3):210–218PubMedCrossRefGoogle Scholar
  241. 241.
    Feroci F, Kroning KC, Lenzi E, Moraldi L, Cantafio S, Scatizzi M (2011) Laparoscopy within a fast-track program enhances the short-term results after elective surgery for resectable colorectal cancer. Surg Endosc 25:2919–2925PubMedCrossRefGoogle Scholar
  242. 242.
    Levack M, Berger D, Sylla P, Rattner D, Bordeianou L (2011) Laparoscopy decreases anastomotic leak rate in sigmoid colectomy for diverticulitis. Arch Surg 146:207–210PubMedCrossRefGoogle Scholar
  243. 243.
    Senagore AJ, Stulberg JJ, Byrnes J, Delaney CP (2009) A national comparison of laparoscopic vs. open colectomy using the National Surgical Quality Improvement Project data. Dis Colon Rectum 52:183–186PubMedCrossRefGoogle Scholar
  244. 244.
    Vaid S, Tucker J, Bell T, Grim R, Ahuja V (2012) Cost analysis of laparoscopic versus open colectomy in patients with colon cancer: results from a large nationwide population database. Am Surg 78:635–641PubMedGoogle Scholar
  245. 245.
    Schwenk W, Haase O, Neudecker J, Muller JM (2005) Short term benefits for laparoscopic colorectal resection. Cochrane Database Syst Rev 3:CD003145Google Scholar
  246. 246.
    Kuhry E, Schwenk WF, Gaupset R, Romild U, Bonjer HJ (2008) Long-term results of laparoscopic colorectal cancer resection. Cochrane Database Syst Rev 2:CD003432Google Scholar
  247. 247.
    Vennix S, Pelzers L, Bouvy N et al (2014) Laparoscopic versus open total mesorectal excision for rectal cancer. Cochrane Database Syst Rev 4:CD005200Google Scholar
  248. 248.
    Stevenson AR, Solomon MJ, Lumley JW et al (2015) Effect of laparoscopic-assisted resection vs open resection on pathological outcomes in rectal cancer: the ALaCaRT randomized clinical trial. JAMA 314:1356–1363PubMedCrossRefGoogle Scholar
  249. 249.
    Fleshman J, Branda M, Sargent DJ et al (2015) Effect of laparoscopic-assisted resection vs open resection of stage II or III rectal cancer on pathologic outcomes: the ACOSOG Z6051 randomized clinical trial. JAMA 314:1346–1355PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Jeong SY, Park JW, Nam BH et al (2014) Open versus laparoscopic surgery for mid-rectal or low-rectal cancer after neoadjuvant chemoradiotherapy (COREAN trial): survival outcomes of an open-label, non-inferiority, randomised controlled trial. Lancet Oncol 15:767–774PubMedCrossRefGoogle Scholar
  251. 251.
    Kang SB, Park JW, Jeong S-Y, Nam BH et al (2010) Open versus laparoscopic surgery for mid or low rectal cancer after neoadjuvant chemoradiotherapy (COREAN trial): short-term outcomes of an open-label randomised controlled trial. Lancet Oncol 11(7):637–645PubMedCrossRefGoogle Scholar
  252. 252.
    Clinical Outcomes of Surgical Therapy Study (2004) G. A comparison of laparoscopically assisted and open colectomy for colon cancer. N Engl J Med 350:2050–2059CrossRefGoogle Scholar
  253. 253.
    Colon Cancer Laparoscopic or Open Resection Study G, Buunen M, Veldkamp R et al (2009) Survival after laparoscopic surgery versus open surgery for colon cancer: long-term outcome of a randomised clinical trial. Lancet Oncol 10:44–52PubMedCrossRefGoogle Scholar
  254. 254.
    Leung KL, Kwok SP, Lam SC et al (2004) Laparoscopic resection of rectosigmoid carcinoma: prospective randomised trial. Lancet 363:1187–1192PubMedCrossRefGoogle Scholar
  255. 255.
    Stucky CC, Pockaj BA, Novotny PJ et al (2011) Long-term follow-up and individual item analysis of quality of life assessments related to laparoscopic-assisted colectomy in the COST trial 93-46-53 (INT 0146). Ann Surg Oncol 18:2422–2431PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Braga M, Vignali A, Zuliani W, Frasson M, Di Serio C, Di Carlo V (2005) Laparoscopic versus open colorectal surgery: cost-benefit analysis in a single-center randomized trial. Ann Surg 242:890–895. (discussion 895–896)PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Crawshaw BP, Chien HL, Augestad KM, Delaney CP (2015) Effect of laparoscopic surgery on health care utilization and costs in patients who undergo colectomy. JAMA Surg 150:410–415PubMedCrossRefGoogle Scholar
  258. 258.
    Janson M, Bjorholt I, Carlsson P et al (2004) Randomized clinical trial of the costs of open and laparoscopic surgery for colonic cancer. Br J Surg 91:409–417PubMedCrossRefGoogle Scholar
  259. 259.
    Vlug MS, Wind J, Hollmann MW et al (2011) Laparoscopy in combination with fast track multimodal management is the best perioperative strategy in patients undergoing colonic surgery: a randomized clinical trial (LAFA-study). Ann Surg 254:868–875PubMedCrossRefGoogle Scholar
  260. 260.
    Lei WZ, Zhao GP, Cheng Z, Li K, Zhou ZG (2004) Gastrointestinal decompression after excision and anastomosis of lower digestive tract. World J Gastroenterol 10:1998–2001PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Feo CV, Romanini B, Sortini D et al (2004) Early oral feeding after colorectal resection: a randomized controlled study. ANZ J Surg 74:298–301PubMedCrossRefGoogle Scholar
  262. 262.
    Petrelli NJ, Stulc JP, Rodriguez-Bigas M, Blumenson L (1993) Nasogastric decompression following elective colorectal surgery: a prospective randomized study. Am Surg 59:632–635PubMedGoogle Scholar
  263. 263.
    Li K, Zhou Z, Chen Z, Zhang Y, Wang C (2011) “Fast Track” nasogastric decompression of rectal cancer surgery. Front Med 5:306–309PubMedCrossRefGoogle Scholar
  264. 264.
    Ortiz H, Armendariz P, Yarnoz C (1996) Is early postoperative feeding feasible in elective colon and rectal surgery? Int J Colorectal Dis 11:119–121PubMedCrossRefGoogle Scholar
  265. 265.
    Brown SR, Seow-Choen F, Eu KW, Heah SM, Tang CL (2001) A prospective randomised study of drains in infra-peritoneal rectal anastomoses. Tech Coloproctol 5:89–92PubMedCrossRefGoogle Scholar
  266. 266.
    Merad F, Hay JM, Fingerhut A et al (1999) Is prophylactic pelvic drainage useful after elective rectal or anal anastomosis? A multicenter controlled randomized trial. French Association for Surgical Research. Surgery 125:529–535PubMedCrossRefGoogle Scholar
  267. 267.
    Merad F, Yahchouchi E, Hay JM, Fingerhut A, Laborde Y, Langlois-Zantain O (1998) Prophylactic abdominal drainage after elective colonic resection and suprapromontory anastomosis: a multicenter study controlled by randomization. French Associations for Surgical Research. Arch Surg 133:309–314PubMedCrossRefGoogle Scholar
  268. 268.
    Sagar PM, Couse N, Kerin M, May J, MacFie J (1993) Randomized trial of drainage of colorectal anastomosis. Br J Surg 80:769–771PubMedCrossRefGoogle Scholar
  269. 269.
    Jesus EC, Karliczek A, Matos D, Castro AA, Atallah AN (2004) Prophylactic anastomotic drainage for colorectal surgery. Cochrane Database Syst Rev 4:CD002100Google Scholar
  270. 270.
    Karliczek A, Jesus EC, Matos D, Castro AA, Atallah AN, Wiggers T (2006) Drainage or nondrainage in elective colorectal anastomosis: a systematic review and meta-analysis. Colorectal Dis 8:259–265PubMedCrossRefGoogle Scholar
  271. 271.
    Petrowsky H, Demartines N, Rousson V, Clavien PA (2004) Evidence-based value of prophylactic drainage in gastrointestinal surgery: a systematic review and meta-analyses. Ann Surg 240:1074–1084PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Urbach DR, Kennedy ED, Cohen MM (1999) Colon and rectal anastomoses do not require routine drainage: a systematic review and meta-analysis. Ann Surg 229:174–180PubMedPubMedCentralCrossRefGoogle Scholar
  273. 273.
    Peeters KC, Tollenaar RA, Marijnen CA et al (2005) Risk factors for anastomotic failure after total mesorectal excision of rectal cancer. Br J Surg 92:211–216PubMedCrossRefGoogle Scholar
  274. 274.
    Denost Q, Rouanet P, Faucheron J-L, Panis Y et al (2017) To drain or not to drain infraperitoneal anastomosis after rectal excision for cancer: the GRECCAR 5 randomized trial. Ann Surg 265(3):474–480PubMedCrossRefGoogle Scholar
  275. 275.
    Brower RG (2009) Consequences of bed rest. Crit Care Med 37:S422–S428PubMedCrossRefGoogle Scholar
  276. 276.
    Convertino VA, Bloomfield SA, Greenleaf JE (1997) An overview of the issues: physiological effects of bed rest and restricted physical activity. Med Sci Sports Exerc 29:187–190PubMedCrossRefGoogle Scholar
  277. 277.
    Feroci F, Lenzi E, Baraghini M et al (2013) Fast-track colorectal surgery: protocol adherence influences postoperative outcomes. Int J Colorectal Dis 28:103–109PubMedCrossRefGoogle Scholar
  278. 278.
    Vlug MS, Bartels SA, Wind J et al (2012) Which fast track elements predict early recovery after colon cancer surgery? Colorectal Dis 14:1001–1008PubMedCrossRefGoogle Scholar
  279. 279.
    Ionescu D, Iancu C, Ion D et al (2009) Implementing fast-track protocol for colorectal surgery: a prospective randomized clinical trial. World J Surg 33:2433–2438PubMedCrossRefGoogle Scholar
  280. 280.
    Gustafsson UO, Hausel J, Thorell A et al (2011) Adherence to the enhanced recovery after surgery protocol and outcomes after colorectal cancer surgery. Arch Surg 146:571–577PubMedCrossRefGoogle Scholar
  281. 281.
    Castelino T, Fiore JF Jr, Niculiseanu P, Landry T, Augustin B, Feldman LS (2016) The effect of early mobilization protocols on postoperative outcomes following abdominal and thoracic surgery: a systematic review. Surgery 159:991–1003PubMedCrossRefGoogle Scholar
  282. 282.
    Liebermann M, Awad M, Dejong M, Rivard C, Sinacore J, Brubaker L (2013) Ambulation of hospitalized gynecologic surgical patients: a randomized controlled trial. Obstet Gynecol 121:533–537PubMedCrossRefGoogle Scholar
  283. 283.
    Wiklund M, Sundqvist E, Fagevik Olsen M (2015) Physical activity in the immediate postoperative phase in patients undergoing Roux-en-Y gastric bypass-a randomized controlled trial. Obes Surg 25:2245–2250PubMedCrossRefGoogle Scholar
  284. 284.
    Silva YR, Li SK, Rickard MJ (2013) Does the addition of deep breathing exercises to physiotherapy-directed early mobilisation alter patient outcomes following high-risk open upper abdominal surgery? Cluster randomised controlled trial. Physiotherapy 99:187–193PubMedCrossRefGoogle Scholar
  285. 285.
    Fiore JF Jr, Castelino T, Pecorelli N et al (2016) Ensuring early mobilization within an enhanced recovery program for colorectal surgery: a randomized controlled trial. Ann SurgGoogle Scholar
  286. 286.
    Ahn KY, Hur H, Kim DH et al (2013) The effects of inpatient exercise therapy on the length of hospital stay in stages I-III colon cancer patients: randomized controlled trial. Int J Colorectal Dis 28:643–651PubMedCrossRefGoogle Scholar
  287. 287.
    Dag A, Colak T, Turkmenoglu O, Gundogdu R, Aydin S (2011) A randomized controlled trial evaluating early versus traditional oral feeding after colorectal surgery. Clinics 66:2001–2005PubMedPubMedCentralCrossRefGoogle Scholar
  288. 288.
    Lobato Dias Consoli M, Maciel Fonseca L, Gomes da Silva R, Toulson Davisson Correia M (2010) Early postoperative oral feeding impacts positively in patients undergoing colonic resection: results of a pilot study. Nutr Hosp 25:806–809PubMedGoogle Scholar
  289. 289.
    da Fonseca L, da Luz MP, Lacerda-Filho A, Correia M, da Silva RG (2011) A simplified rehabilitation program for patients undergoing elective colonic surgery–randomized controlled clinical trial. Int J Colorectal Dis 26:609–616PubMedCrossRefGoogle Scholar
  290. 290.
    El Nakeeb A, Fikry A, El Metwally T et al (2009) Early oral feeding in patients undergoing elective colonic anastomosis. Int J Surg 7:206–209PubMedCrossRefGoogle Scholar
  291. 291.
    Lucha PJ, Butler R, Plichta J, Francis M (2005) The economic impact of early enteral feeding in gastrointestinal surgery: a prospective survey of 51 consecutive patients. Am Surg 71:187–190PubMedGoogle Scholar
  292. 292.
    Aihara H, Kawamura Y, Konishi F (2003) Reduced medical costs achieved after elective oncological colorectal surgery by early feeding and fewer scheduled examinations. J Gastroenterol 38:747–750PubMedCrossRefGoogle Scholar
  293. 293.
    Kawamura Y, Uchida H, Watanabe T, Nagawa H (2000) Early feeding after oncological colorectal surgery in Japanese patients. J Gastroenterol 35:524–527PubMedCrossRefGoogle Scholar
  294. 294.
    Binderow S, Cohen S, Wexner S, Nogueras J (1994) Must early postoperative oral intake be limited to laparoscopy? Dis Colon Rectum 37:584–589PubMedCrossRefGoogle Scholar
  295. 295.
    Han-Geurts I, Hop W, Kok N, Lim A, Brouwer K, Jeekel J (2007) Randomized clinical trial of the impact of early enteral feeding on postoperative ileus and recovery. Br J Surg 94(5):555–561PubMedCrossRefGoogle Scholar
  296. 296.
    Hartsell P, Frazee R, Harrison J, Smith R (1997) Early postoperative feeding after elective colorectal surgery. Arch Surg 132:518–520. (discussion 520–511)PubMedCrossRefGoogle Scholar
  297. 297.
    Stewart B, Woods R, Collopy B, Fink R, Mackay J, Keck J (1998) Early feeding after elective open colorectal resections: a prospective randomized trial. Aust N Z J Surg 68:125–128PubMedCrossRefGoogle Scholar
  298. 298.
    Andersen H, Lewis S, Thomas S (2006) Early enteral nutrition within 24 h of colorectal surgery versus later commencement of feeding for postoperative complications. Cochrane Database Syst Rev CD004080Google Scholar
  299. 299.
    Osland E, Yunus R, Khan S, Memon M (2011) Early versus traditional postoperative feeding in patients undergoing resectional gastrointestinal surgery: a meta-analysis. JPEN J Parenter Enteral Nutr 35:473–487PubMedCrossRefGoogle Scholar
  300. 300.
    Wallstrom A, Frisman G (2014) Facilitating early recovery of bowel motility after colorectal surgery: a systematic review. J Clin Nurs 23:24–44PubMedCrossRefGoogle Scholar
  301. 301.
    Zhuang C, Ye X, Zhang C, Dong Q, Chen B, Yu Z (2013) Early versus traditional postoperative oral feeding in patients undergoing elective colorectal surgery: a meta-analysis of randomized clinical trials. Dig Surg 30:225–232PubMedCrossRefGoogle Scholar
  302. 302.
    Boelens P, Heesakkers F, Luyer M et al (2014) Reduction of postoperative ileus by early enteral nutrition in patients undergoing major rectal surgery: prospective, randomized, controlled trial. Ann Surg 259:649–655PubMedCrossRefGoogle Scholar
  303. 303.
    Ng W, Neill J (2006) Evidence for early oral feeding of patients after elective open colorectal surgery: a literature review. J Clin Nurs 15:696–709PubMedCrossRefGoogle Scholar
  304. 304.
    DiFronzo L, Yamin N, Patel K, O’Connell T (2003) Benefits of early feeding and early hospital discharge in elderly patients undergoing open colon resection. J Am Coll Surg 197:747–752PubMedCrossRefGoogle Scholar
  305. 305.
    Fujii T, Morita H, Sutoh T et al (2014) Benefit of oral feeding as early as one day after elective surgery for colorectal cancer: oral feeding on first versus second postoperative day. Int Surg 99:211–215PubMedPubMedCentralCrossRefGoogle Scholar
  306. 306.
    Kawamura Y, Kuwahara Y, Mizokami K et al (2010) Patient’s appetite is a good indicator for postoperative feeding: a proposal for individualized postoperative feeding after surgery for colon cancer. Int J Colorectal Dis 25:239–243PubMedCrossRefGoogle Scholar
  307. 307.
    Lloyd G, Kirby R, Hemingway D, Keane F, Miller A, Neary P (2010) The RAPID protocol enhances patient recovery after both laparoscopic and open colorectal resections. Surg Endosc 24:1434–1439PubMedCrossRefGoogle Scholar
  308. 308.
    Reissman P, Teoh T, Cohen S, Weiss E, Nogueras J, Wexner S (1995) Is early oral feeding safe after elective colorectal surgery? A prospective randomized trial. Ann Surg 222:73–77PubMedPubMedCentralCrossRefGoogle Scholar
  309. 309.
    Raue W, Haase O, Junghans T, Scharfenberg M, Muller J, Schwenk W (2004) ‘Fast-track’ multimodal rehabilitation program improves outcome after laparoscopic sigmoidectomy: a controlled prospective evaluation. Surg Endosc 18(10):1463–1468PubMedCrossRefGoogle Scholar
  310. 310.
    Lee T, Kang S, Kim D, Hong S, Heo S, Park K (2011) Comparison of early mobilization and diet rehabilitation program with conventional care after laparoscopic colon surgery: a prospective randomized controlled trial. Dis Colon Rectum 54:21–28PubMedCrossRefGoogle Scholar
  311. 311.
    Petrelli N, Cheng C, Driscoll D, Rodriguez-Bigas M (2001) Early postoperative oral feeding after colectomy: an analysis of factors that may predict failure. Ann Surg Oncol 8:796–800PubMedCrossRefGoogle Scholar
  312. 312.
    Rohatiner T, Wend J, Rhodes S, Murrell Z, Berel D, Fleshner P (2012) A prospective single-institution evaluation of current practices of early postoperative feeding after elective intestinal surgery. Am Surg 78:1147–1150PubMedGoogle Scholar
  313. 313.
    Alfonsi P, Slim K, Chauvin M, Mariani P, Faucheron J, Fletcher D (2014) French guidelines for enhanced recovery after elective colorectal surgery. J Visc Surg 151:65–79PubMedCrossRefGoogle Scholar
  314. 314.
    Asao T, Kuwano H, Nakamura J, Morinaga N, Hirayama I, Ide M (2002) Gum chewing enhances early recovery from postoperative ileus after laparoscopic colectomy. J Am Coll Surg 195:30–32PubMedCrossRefGoogle Scholar
  315. 315.
    Chan M, Law W (2007) Use of chewing gum in reducing postoperative ileus after elective colorectal resection: a systematic review. Dis Colon Rectum 50:2149–2157PubMedCrossRefGoogle Scholar
  316. 316.
    de Castro S, van den Esschert J, van Heek N et al (2008) A systematic review of the efficacy of gum chewing for the amelioration of postoperative ileus. Dig Surg 25:39–45PubMedCrossRefGoogle Scholar
  317. 317.
    Fitzgerald J, Ahmed I (2009) Systematic review and meta-analysis of chewing-gum therapy in the reduction of postoperative paralytic ileus following gastrointestinal surgery. World J Surg 33:2557–2566PubMedCrossRefGoogle Scholar
  318. 318.
    Ho Y, Smith S, Pockney P, Lim P, Attia J (2014) A meta-analysis on the effect of sham feeding following colectomy: should gum chewing be included in enhanced recovery after surgery protocols? Dis Colon Rectum 57:115–126PubMedCrossRefGoogle Scholar
  319. 319.
    Li S, Liu Y, Peng Q, Xie L, Wang J, Qin X (2013) Chewing gum reduces postoperative ileus following abdominal surgery: a meta-analysis of 17 randomized controlled trials. J Gastroenterol Hepatol 28:1122–1132PubMedCrossRefGoogle Scholar
  320. 320.
    Parnaby C, MacDonald A, Jenkins J (2009) Sham feed or sham? A meta-analysis of randomized clinical trials assessing the effect of gum chewing on gut function after elective colorectal surgery. Int J Colorectal Dis 24:585–592PubMedCrossRefGoogle Scholar
  321. 321.
    Purkayastha S, Tilney H, Darzi A, Tekkis P (2008) Meta-analysis of randomized studies evaluating chewing gum to enhance postoperative recovery following colectomy. Arch Surg 143:788–793PubMedCrossRefGoogle Scholar
  322. 322.
    Yin Z, Sun J, Liu T, Zhu Y, Peng S, Wang J (2013) Gum chewing: another simple potential method for more rapid improvement of postoperative gastrointestinal function. Digestion 87:67–74PubMedCrossRefGoogle Scholar
  323. 323.
    Vasquez W, Hernandez A, Garcia-Sabrido J (2009) Is gum chewing useful for ileus after elective colorectal surgery? A systematic review and meta-analysis of randomized clinical trials. J Gastrointest Surg 13:649–656PubMedCrossRefGoogle Scholar
  324. 324.
    Gilbert G (2008) Chewing gum hastens bowel motility and shortens hospital stay after colorectal surgery. J Natl Med Assoc 100:460Google Scholar
  325. 325.
    Short V, Herbert G, Perry R et al (2015) Chewing gum for postoperative recovery of gastrointestinal function. Cochrane Database Syst Rev. 2:CD006506Google Scholar
  326. 326.
    Wolff B, Michelassi F, Gerkin T et al (2004) Alvimopan, a novel, peripherally acting mu opioid antagonist: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial of major abdominal surgery and postoperative ileus. Ann Surg 240:728–734PubMedPubMedCentralGoogle Scholar
  327. 327.
    Viscusi E, Goldstein S, Witkowski T et al (2006) Alvimopan, a peripherally acting mu-opioid receptor antagonist, compared with placebo in postoperative ileus after major abdominal surgery: results of a randomized, double-blind, controlled study. Surg Endosc 20:64–70PubMedCrossRefGoogle Scholar
  328. 328.
    Delaney C, Weese J, Hyman N et al (2005) Phase III trial of alvimopan, a novel, peripherally acting, mu opioid antagonist, for postoperative ileus after major abdominal surgery. Dis Colon Rectum 48:1114–1125. (discussion 1125–1116; author reply 1127–1119)PubMedCrossRefGoogle Scholar
  329. 329.
    Wolff B, Weese J, Ludwig K et al (2007) Postoperative ileus-related morbidity profile in patients treated with alvimopan after bowel resection. J Am Coll Surg 204:609–616PubMedCrossRefGoogle Scholar
  330. 330.
    Irving G, Penzes J, Ramjattan B et al (2011) A randomized, placebo-controlled phase 3 trial (Study SB-767905/013) of alvimopan for opioid-induced bowel dysfunction in patients with non-cancer pain. J Pain 12:175–184PubMedCrossRefGoogle Scholar
  331. 331.
    Delaney C, Senagore A, Viscusi E et al (2006) Postoperative upper and lower gastrointestinal recovery and gastrointestinal morbidity in patients undergoing bowel resection: pooled analysis of placebo data from 3 randomized controlled trials. Am J Surg 191:315–319PubMedCrossRefGoogle Scholar
  332. 332.
    Delaney C, Wolff B, Viscusi E et al (2007) Alvimopan, for postoperative ileus following bowel resection: a pooled analysis of phase III studies. Ann Surg 245:355–363PubMedPubMedCentralCrossRefGoogle Scholar
  333. 333.
    Bell T, Poston S, Kraft M, Senagore A, Delaney C, Techner L (2009) Economic analysis of alvimopan in North American Phase III efficacy trials. American J Health-System Pharmacy 66:1362–1368CrossRefGoogle Scholar
  334. 334.
    Ludwig K, Viscusi E, Wolff B, Delaney C, Senagore A, Techner L (2010) Alvimopan for the management of postoperative ileus after bowel resection: characterization of clinical benefit by pooled responder analysis. World J Surg 34:2185–2190PubMedPubMedCentralCrossRefGoogle Scholar
  335. 335.
    Senagore A, Bauer J, Du W, Techner L (2007) Alvimopan accelerates gastrointestinal recovery after bowel resection regardless of age, gender, race, or concomitant medication use. Surgery 142:478–486PubMedCrossRefGoogle Scholar
  336. 336.
    Ludwig K, Enker W, Delaney C et al (2008) Gastrointestinal tract recovery in patients undergoing bowel resection: results of a randomized trial of alvimopan and placebo with a standardized accelerated postoperative care pathway. Arch Surg 143:1098–1105PubMedCrossRefGoogle Scholar
  337. 337.
    Winegar B, Cox M, Truelove D, Brock G, Scherrer N, Pass L (2013) Efficacy of alvimopan following bowel resection: a comparison of two dosing strategies. Ann Pharmacother 47:1406–1413PubMedCrossRefGoogle Scholar
  338. 338.
    Buchler M, Seiler C, Monson J et al (2008) Clinical trial: alvimopan for the management of post-operative ileus after abdominal surgery: results of an international randomized, double-blind, multicentre, placebo-controlled clinical study. Aliment Pharmacol Ther 28:312–325PubMedCrossRefGoogle Scholar
  339. 339.
    Vaughan-Shaw P, Fecher I, Harris S, Knight J (2012) A meta-analysis of the effectiveness of the opioid receptor antagonist alvimopan in reducing hospital length of stay and time to GI recovery in patients enrolled in a standardized accelerated recovery program after abdominal surgery. Dis Colon Rectum 55:611–620PubMedCrossRefGoogle Scholar
  340. 340.
    McNicol E, Boyce D, Schumann R, Carr D (2008) Efficacy and safety of mu-opioid antagonists in the treatment of opioid-induced bowel dysfunction: systematic review and meta-analysis of randomized controlled trials. Pain Med 9:634–659PubMedCrossRefGoogle Scholar
  341. 341.
    Tan E, Cornish J, Darzi A, Tekkis P (2007) Meta-analysis: alvimopan vs. placebo in the treatment of post-operative ileus. Aliment Pharmacol Ther 25:47–57PubMedGoogle Scholar
  342. 342.
    McNicol E, Boyce D, Schumann R, Carr D (2008) Mu-opioid antagonists for opioid-induced bowel dysfunction. Cochrane Database Syst Rev. doi: 10.1002/14651858.CD006332.pub2 PubMedGoogle Scholar
  343. 343.
    Kelley S, Wolff B, Lovely J, Larson D (2013) Fast-track pathway for minimally invasive colorectal surgery with and without alvimopan (Entereg): which is more cost-effective? Am Surg 79:630–633PubMedGoogle Scholar
  344. 344.
    Wang S, Shah N, Philip J, Caraccio T, Feuerman M, Malone B (2012) Role of alvimopan (entereg) in gastrointestinal recovery and hospital length of stay after bowel resection. Pharmacy Ther 37:518–525Google Scholar
  345. 345.
    Whelpley R, Pierce M, Collins R, Timmerman W (2011) An evaluation of alvimopan use as part of perioperative management of patients undergoing laparoscopic small and large bowel resections. Hosp Pharmacy 46:26–32CrossRefGoogle Scholar
  346. 346.
    Itawi E, Savoie L, Hanna A, Apostolides G (2011) Alvimopan addition to a standard perioperative recovery pathway. JSLS. 15:492–498PubMedPubMedCentralCrossRefGoogle Scholar
  347. 347.
    Absher R, Gerkin T, Banares L (2010) Alvimopan use in laparoscopic and open bowel resections: clinical results in a large community hospital system. Ann Pharmacother 44:1701–1708PubMedCrossRefGoogle Scholar
  348. 348.
    Delaney C, Marcello P, Sonoda T, Wise P, Bauer J, Techner L (2010) Gastrointestinal recovery after laparoscopic colectomy: results of a prospective, observational, multicenter study. Surg Endosc 24:653–661PubMedCrossRefGoogle Scholar
  349. 349.
    Simorov A, Thompson J, Oleynikov D (2014) Alvimopan reduces length of stay and costs in patients undergoing segmental colonic resections: results from multicenter national administrative database. Am J Surg 208:919–925. (discussion 925)PubMedCrossRefGoogle Scholar
  350. 350.
    Obokhare I, Champagne B, Stein S, Krpata D, Delaney C (2011) The effect of alvimopan on recovery after laparoscopic segmental colectomy. Dis Colon Rectum 54:743–746PubMedCrossRefGoogle Scholar
  351. 351.
    Harbaugh C, Al-Holou S, Bander T et al (2013) A statewide, community-based assessment of alvimopan’s effect on surgical outcomes. Ann Surg 257:427–432PubMedCrossRefGoogle Scholar
  352. 352.
    Nguyen D, Maithel S, Nguyen E, Bechtold M (2015) Does alvimopan enhance return of bowel function in laparoscopic gastrointestinal surgery? A meta-analysis. Ann Gastroenterol. 28:475–480PubMedPubMedCentralGoogle Scholar
  353. 353.
    Keller D, Flores-Gonzalez J, Ibarra S, Mahmood A, Haas E (2016) Is there value in alvimopan in minimally invasive colorectal surgery? Am J Surg 212(5):851–856PubMedCrossRefGoogle Scholar
  354. 354.
    Barletta J, Asgeirsson T, El-Badawi K, Senagore A (2011) Introduction of alvimopan into an enhanced recovery protocol for colectomy offers benefit in open but not laparoscopic colectomy. J Laparoendosc Adv Surg Tech A. 21:887–891PubMedCrossRefGoogle Scholar
  355. 355.
    Poston S, Broder M, Gibbons M et al (2011) Impact of alvimopan (entereg) on hospital costs after bowel resection: results from a large inpatient database. Pharmacy Ther 36:209–220Google Scholar
  356. 356.
    Adam M, Lee L, Kim J et al (2016) Alvimopan provides additional improvement in outcomes and cost savings in enhanced recovery colorectal surgery. Ann Surg 264:141–146PubMedCrossRefGoogle Scholar
  357. 357.
    Cook JA, Fraser IA, Sandhu D, Everson NW, Fossard DP (1989) A randomised comparison of two postoperative fluid regimens. Ann R Coll Surg Engl 71:67–69PubMedPubMedCentralGoogle Scholar
  358. 358.
    Thiel SW, Kollef MH, Isakow W (2009) Non-invasive stroke volume measurement and passive leg raising predict volume responsiveness in medical ICU patients: an observational cohort study. Crit Care 13:R111PubMedPubMedCentralCrossRefGoogle Scholar
  359. 359.
    Wald HL, Ma A, Bratzler DW, Kramer AM (2008) Indwelling urinary catheter use in the postoperative period: analysis of the national surgical infection prevention project data. Arch Surg 143:551–557PubMedCrossRefGoogle Scholar
  360. 360.
    Rose R, Hunting KJ, Townsend TR, Wenzel RP (1977) Morbidity/mortality and economics of hospital-acquired blood stream infections: a controlled study. South Med J 70:1267–1269PubMedCrossRefGoogle Scholar
  361. 361.
    Emori TG, Banerjee SN, Culver DH et al (1991) Nosocomial infections in elderly patients in the United States, 1986–1990. National Nosocomial Infections Surveillance System. Am J Med 91:289s–293sPubMedCrossRefGoogle Scholar
  362. 362.
    Varadhan KK, Neal KR, Dejong CH, Fearon KC, Ljungqvist O, Lobo DN (2010) The enhanced recovery after surgery (ERAS) pathway for patients undergoing major elective open colorectal surgery: a meta-analysis of randomized controlled trials. Clin Nutr 29:434–440PubMedCrossRefGoogle Scholar
  363. 363.
    Kahokehr A, Sammour T, Zargar-Shoshtari K, Srinivasa S, Hill AG (2010) Recovery after open and laparoscopic right hemicolectomy: a comparison. J Surg Res 162:11–16PubMedCrossRefGoogle Scholar
  364. 364.
    Basse L, Hjort Jakobsen D, Billesbolle P, Werner M, Kehlet H (2000) A clinical pathway to accelerate recovery after colonic resection. Ann Surg 232:51–57PubMedPubMedCentralCrossRefGoogle Scholar
  365. 365.
    Coyle D, Joyce KM, Garvin JT et al (2015) Early post-operative removal of urethral catheter in patients undergoing colorectal surgery with epidural analgesia—a prospective pilot clinical study. Int J Surg 16:94–98PubMedCrossRefGoogle Scholar
  366. 366.
    Zaouter C, Kaneva P, Carli F (2009) Less urinary tract infection by earlier removal of bladder catheter in surgical patients receiving thoracic epidural analgesia. Reg Anesth Pain Med 34:542–548PubMedCrossRefGoogle Scholar
  367. 367.
    Grass F, Slieker J, Frauche P et al (2017) Postoperative urinary retention in colorectal surgery within an enhanced recovery pathway. J Surg Res 207:70–76PubMedCrossRefGoogle Scholar
  368. 368.
    Alyami M, Lundberg P, Passot G, Glehen O, Cotte E (2016) Laparoscopic colonic resection without urinary drainage: is it “feasible”? J Gastrointest Surg 20:1388–1392PubMedCrossRefGoogle Scholar
  369. 369.
    Lee SY, Kang SB, Kim DW, Oh HK, Ihn MH (2015) Risk factors and preventive measures for acute urinary retention after rectal cancer surgery. World J Surg 39:275–282PubMedCrossRefGoogle Scholar
  370. 370.
    Yoo BE, Kye BH, Kim HJ, Kim G, Kim JG, Cho HM (2015) Early removal of the urinary catheter after total or tumor-specific mesorectal excision for rectal cancer is safe. Dis Colon Rectum 58:686–691PubMedCrossRefGoogle Scholar
  371. 371.
    Zmora O, Madbouly K, Tulchinsky H, Hussein A, Khaikin M (2010) Urinary bladder catheter drainage following pelvic surgery–is it necessary for that long? Dis Colon Rectum 53:321–326PubMedCrossRefGoogle Scholar
  372. 372.
    Benoist S, Panis Y, Denet C, Mauvais F, Mariani P, Valleur P (1999) Optimal duration of urinary drainage after rectal resection: a randomized controlled trial. Surgery 125:135–141PubMedCrossRefGoogle Scholar

Copyright information

© Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) 2017

Authors and Affiliations

  • Joseph C. Carmichael
    • 1
  • Deborah S. Keller
    • 2
  • Gabriele Baldini
    • 3
  • Liliana Bordeianou
    • 4
  • Eric Weiss
    • 5
  • Lawrence Lee
    • 6
  • Marylise Boutros
    • 6
  • James McClane
    • 7
  • Scott R. Steele
    • 8
  • Liane S. Feldman
    • 6
    • 9
    Email author
  1. 1.Department of SurgeryUniversity of California, Irvine School of MedicineIrvineUSA
  2. 2.Department of SurgeryBaylor University Medical CenterDallasUSA
  3. 3.Department of AnesthesiologyMcGill UniversityMontrealCanada
  4. 4.Department of SurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  5. 5.Department of Colorectal SurgeryCleveland Clinic FloridaWestinUSA
  6. 6.Department of SurgeryMcGill UniversityMontrealCanada
  7. 7.Norwalk Hospital, Western Connecticut Medical GroupNorwalkUSA
  8. 8.Department of Colorectal SurgeryCleveland ClinicClevelandUSA
  9. 9.McGill University Health CentreMontrealCanada

Personalised recommendations