Advertisement

Surgical Endoscopy

, Volume 30, Issue 12, pp 5232–5238 | Cite as

Pretreatment with endothelium-derived nitric oxide synthesis modulators on gastrointestinal microcirculation during NOTES: an experimental study

  • Pilar Taurà
  • Aitnitze Ibarzabal
  • Marina Vendrell
  • Cedric Adelsdorfer
  • Alberto Delitala
  • Borja de Lacy
  • Ramon Deulofeu
  • Salvadora Delgado
  • Antonio M. Lacy
Article

Abstract

Background and study aims

On-demand endoscopic insufflation during natural orifice transluminal endoscopic surgery (NOTES) adversely affects microcirculatory blood flow (MBF), even with low mean intra-abdominal pressure, suggesting that shear stress caused by time-varying flow fluctuations has a great impact on microcirculation. As shear stress is inversely related to vascular diameter, nitric oxide (NO) production acts as a brake to vasoconstriction.

Objective

To assess whether pretreatment by NO synthesis modulators protects gastrointestinal MBF during transgastric peritoneoscopy.

Methods

Fourteen pigs submitted to cholecystectomy by endoscope CO2 insufflation for 60 min were randomized into 2 groups: (1) 150 mg/kg of N-acetyl cysteine (NAC, n = 7) and (2) 4 ml/kg of hypertonic saline 7.5 % (HS, n = 7), and compared to a non-treated NOTES group (n = 7). Five animals made up a sham group. Colored microspheres were used to assess changes in MBF.

Results

The average level of intra-abdominal pressure was similar in all groups (9 mmHg). In NOTES group microcirculation decrease compared with baseline was greater in renal cortex, mesocolon, and mesentery (41, 42, 44 %, respectively, p < 0.01) than in renal medulla, colon, and small bowel (29, 32, 34, respectively, p < 0.05). NAC avoided the peritoneoscopy effect on renal medulla and cortex (4 and 14 % decrease, respectively) and reduced the impact on colon and small bowel (20 % decrease). HS eliminated MBF changes in colon and small bowel (14 % decrease) and modulated MBF in renal medulla and cortex (19 % decrease). Neither treatment influenced mesentery MBF decrease.

Conclusions

Both pretreatments can effectively attenuate peritoneoscopy-induced deleterious effects on gastrointestinal MBF.

Keywords

NOTES surgery Hypertonic saline N-acetyl cysteine 

Notes

Acknowledgments

Special Thanks to Dr. Gonzalez-Abraldes for his technical expertise with the microspheres technique.

Funding

This study was supported by a grant of EURO-NOTES 2009.

Compliance with ethical standards

Disclosures

Dr. Antonio M Lacy is a consultant for Covidien and Olympus Medical. Drs. Pilar Taurà, Ainitze Ibarzábal, Marina Vendrell, Cedric Adelsdorfer, Alberto Delitala, Borja de Lacy, Ramon Deulofeu, and Salvadora Delgado have no conflict of interest to declare.

References

  1. 1.
    Kalloo AN, Singh VK, Jagannath SB, Niiyama H, Hill SL, Vaughn CA, Magee CA, Kantsevoy SV (2004) Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions. Gastrointest Endosc 60:114–117CrossRefPubMedGoogle Scholar
  2. 2.
    Kantsevoy SV, Hu B, Jagannath SB, Vaughn CA, Beitler DM, Chung SS, Cotton PB, Gostout CJ, Hawes RH, Parischa PJ, Magee CA, Pipitone LJ, Talamini MA, Kaloo AN (2006) Per-oral transgastric endoscopic splenectomy: Is it possible? Surg Endosc 20:522–525CrossRefPubMedGoogle Scholar
  3. 3.
    Caldwell CB, Ricota JJ (1987) Changes in visceral blood flow with elevated intraabdominal pressure. J Surg Res 43:14–20CrossRefPubMedGoogle Scholar
  4. 4.
    Sala-Blanch X, Fontanals J, Martinez-Palli G, Taurà P, Delgado S, Bosch J, Lacy AM, Visa J (1998) Effects of carbon dioxide vs helium pneumoperitoneum on hepatic blood flow. Surg Endosc 12:1121–1125CrossRefPubMedGoogle Scholar
  5. 5.
    Demyttenaere S, Feldman LS, Fried GM (2007) Effect of pneumoperitoneum on renal perfusion and function: a systematic review. Surg Endosc 21:152–160CrossRefPubMedGoogle Scholar
  6. 6.
    Sammour T, Mittal A, Loveday BP, Kahokehr A, Phillips AR, Windsor JA, Hill AG (2009) Systematic review of oxidative stress associated with pneumoperitoneum. Br J Surg 96:836–850CrossRefPubMedGoogle Scholar
  7. 7.
    Vajda K, Szabó A, Kucsa K, Suki B, Boros M (2004) Microcirculatory heterogeneity in the rat small intestine during compromised flow conditions. Microcirculation 11:307–315CrossRefPubMedGoogle Scholar
  8. 8.
    Uematsu M, Ohara Y, Navas JP, Nishida K, Murphy TJ, Alexander RW, Nerem RM, Harrison DG (1995) Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol 269:C1371–C1378PubMedGoogle Scholar
  9. 9.
    Stepp DW, Merkus D, Nishikawa Y, Chilian WM (2001) Nitric oxide limits coronary vasoconstriction by a shear stress-dependent mechanism. Am J Physiol Heart Circ Physiol 281:H796–H803PubMedGoogle Scholar
  10. 10.
    Ali NA, Eubanks WS, Stamler JS, Gow AJ, lagoo-Deenadalayan SA, Villegas L, El-Moalem HE, Reynolds JD (2005) A method to attenuate pneumoperitoneum-induced reductions in splanchnic blood flow. Ann Surg 24:256–261CrossRefGoogle Scholar
  11. 11.
    Shimazutsu K, Uemura K, Auten KM, Baldwin MF, Belknap SW, La Blanca F, Jones MC, McClaine DJ, McClaine RJ, Eubanks WS, Stamler JS, Reynolds JD (2009) Inclusion of a nitric oxide congener in the insufflation gas repletes S-Nitrosohemoglobin and stabilizes physiologic status during prolonged carbon dioxide pneumoperitoneum. Clin Transl Sci 2:405–412CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    von Delius S, Huber W, Feussner H, Wilhel D, Karagianni A, Henke J, Preissel A, Schneider A, Schmid RM, Meining A (2007) Effect of pneumoperitoneum on hemodynamics and inspiratory pressures during natural orifice transluminal endoscopic surgery (NOTES): an experimental, controlled study in an acute porcine model. Endoscopy 39:854–859CrossRefGoogle Scholar
  13. 13.
    Adelsdorfer C, Taura P, Ibarzabal A, Vendrell M, Delitala A, Deulofeu R, Adelsdorfer W, Delgado S, Lacy AM (2015) Effect of transgastric NOTES peritoneoscopy on abdominal organ microcirculation. An experimental controlled study. Gastrointest Endosc. doi: 10.1016/j.gie.2015.06.055 PubMedGoogle Scholar
  14. 14.
    Zani BG, Bohlen G (2005) Transport of extracellular l-arginine via cationic amino acid transporter is required during in vivo endothelial nitric oxide production. Am J Physiol Heart Circ Physiol 289:H1381–H1390CrossRefPubMedGoogle Scholar
  15. 15.
    Heyman SN, Goldfarb M, Shina A, Karmeli F, Rosen S (2003) N-acetyl cysteine ameliorates renal microcirculation: studies in rats. Kidney Int 63:634–641CrossRefPubMedGoogle Scholar
  16. 16.
    Zani BG, Bohlen HG (2005) Sodium channels are required during in vivo sodium chloride hyperosmolarity to stimulate increase in intestinal endothelial nitric oxide production. Am J Physiol Heart Circ Physiol 288:H89–H95CrossRefPubMedGoogle Scholar
  17. 17.
    Pascual JL, Khwaja KA, Chaudhury P, Christou NV (2003) Hypertonic saline and the microcirculation. J Trauma 54:S133–S140CrossRefPubMedGoogle Scholar
  18. 18.
    Hofer CK, Furrer L, Matter-Ensner S, Maloigne M, Klaghofer R, Genoni M, Zollinger A (2005) Volumetric preload measurement by thermodilution: a comparison with transesophageal echocardiography. Br J Anaesth 94:748–755CrossRefPubMedGoogle Scholar
  19. 19.
    Hodeige D, De Pauw M, Eechaute W, Weyne J, Heyndrickx GR (1999) On the validity of blood flow measurement using coloured microspheres. Am J Physiol 276:H1150–H1158PubMedGoogle Scholar
  20. 20.
    Fazekas AS, Funk GC, Klobassa DS, Rüther H, Ziegler I, Zander R, Semmelrock HJ (2013) Evaluation of 36 formulas for calculating plasma osmolality. Intensive Care Med 39:302–308CrossRefPubMedGoogle Scholar
  21. 21.
    Olofsson PH, Berg S, Ahn HC, Brudin LH, Vikström T, Johansson KJ (2009) Gastrointestinal microcirculation and cardiopulmonary function during experimentally increased intra-abdominal pressure. Crit Care Med 37:230–239CrossRefPubMedGoogle Scholar
  22. 22.
    Carlson BE, Arciero JC, Secomb TW (2008) Theoretical model of blood flow autoregulation: roles of myogenic shear-dependent, and metabolic responses. Am J Physiol Heart Circ Physiol 295:H1572–H1579CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cornelissen AJ, Dankelman J, VanBavel E, Spaan JA (2002) Balance between myogenic, flow-dependent, and metabolic flow control in coronary arterial tree: a model study. Am J Physiol Heart Circ Physiol 282:H2224–H2237CrossRefPubMedGoogle Scholar
  24. 24.
    Nase PG, Tuttle J, Bohlen HG (2003) Reduced perivascular PO2 increases nitric oxide release from endothelial cells. Am J Physiol Heart Circ Physiol 285:H507–H515CrossRefPubMedGoogle Scholar
  25. 25.
    Matlung HL, Bakker ENTP, VanBabel E (2009) Shear stress, reactive oxygen species and arterial structure and function. Antioxid Redox Signal 11:1699–1709CrossRefPubMedGoogle Scholar
  26. 26.
    Taura P, Lopez A, Lacy AM, Anglada T, Beltran J, Fernandez-Cruz L, Tarragona E, García-Valdecasas JC, Marin JL (1998) Prolonged pneumoperitoneum at 15 mmHg causes lactic acidosis. Surg Endosc 12:198–201CrossRefPubMedGoogle Scholar
  27. 27.
    Conesa EL, Valero F, Nadal JC, Fenoy FJ, López B, Arregui B, Salom MG (2001) N-acetyl-l-cysteine improves renal medullary hypoperfusion in acute renal failure. Am J Physiol Regul Integr Comp Physiol 281(3):R730–R737PubMedGoogle Scholar
  28. 28.
    Zou A, Cowley AW (1997) Nitric oxide in renal cortex and medulla: an in vivo microdialysis study. Hypertension 29:194–198CrossRefPubMedGoogle Scholar
  29. 29.
    Bishara B, Ramadan R, Karram T, Awad H, Abu-Saleh N, Winaver J, Assadi A, Abassi Z (2010) Nitric oxide synthase inhibition aggravates the adverse renal effects of high but not low intraabdominal pressure. Surg Endosc 24:826–833CrossRefPubMedGoogle Scholar
  30. 30.
    Bishara B, Karram T, Khabit S, Ramadan R, Schwarts H, Hoffman A, Abassi Z (2009) Impact of pneumoperitoneum on renal perfusion and excretory function: beneficial effects of nitroglycerin. Surg Endosc 23:568–576CrossRefPubMedGoogle Scholar
  31. 31.
    Oliveira RP, Velasco I, Soriano F, Friedman G (2002) Clinical review: hypertonic saline resuscitation in sepsis. Crit Care 6:418–423CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Harrison PM, Wendon JA, Gimson AE, Alexander GJ, Williams R (1991) Improvement by acetyl cysteine of hemodynamics and oxygen transport in fulminant hepatic failure. N Engl J Med 324:1852–1857CrossRefPubMedGoogle Scholar
  33. 33.
    Matsushita H, Chang E, Glassford AJ, Cooke JP, Chiu CP, Tsao PS (2001) eNOS activity is reduced in senescent human endothelial cells. Preservation by hTERT immortalization. Circ Res 89:793–798CrossRefPubMedGoogle Scholar
  34. 34.
    O’Sullivan S, Healy DA, Moloney MC, Grace PA, Walsh SR (2013) The role of N-acetylcysteine in the prevention of contrast-induced nephropathy in patients undergoing peripheral angiography: a structured review and meta-analysis. Angiology 64:576–582CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Pilar Taurà
    • 1
  • Aitnitze Ibarzabal
    • 2
  • Marina Vendrell
    • 1
  • Cedric Adelsdorfer
    • 2
  • Alberto Delitala
    • 2
  • Borja de Lacy
    • 2
  • Ramon Deulofeu
    • 3
  • Salvadora Delgado
    • 2
  • Antonio M. Lacy
    • 2
  1. 1.Department of Anaesthesiology, Hospital ClinicUniversity of BarcelonaBarcelonaSpain
  2. 2.Department of Gastrointestinal Surgery, Institute of Digestive and Metabolic Diseases, Hospital ClinicUniversity of BarcelonaBarcelonaSpain
  3. 3.Department of Biochemistry and Molecular Genetics, Hospital ClinicUniversity of BarcelonaBarcelonaSpain

Personalised recommendations