Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A cost evaluation methodology for surgical technologies

Abstract

Objective

To create and validate a micro-costing methodology that surgeons and hospital administrators can use to evaluate the cost of implementing innovative surgical technologies.

Methods

Our analysis is broken down into several elements of fixed and variable costs which are used to effectively and easily calculate the cost of surgical operations. As an example of application, we use data from 86 robot assisted gastric bypass operations made in our hospital. To validate our methodology, we discuss the cost reporting approaches used in 16 surgical publications with respect to 7 predefined criteria.

Results

Four formulas are created which allow users to import data from their health system or particular situation and derive the total cost. We have established that the robotic surgical system represents 97.53 % of our operating room’s medical device costs which amounts to $4320.11. With a mean surgery time of 303 min, personnel cost per operation amounts to $1244.73, whereas reusable instruments and disposable costs are, respectively, $1539.69 and $3629.55 per case. The literature survey demonstrates that the cost of surgery is rarely reported or emphasized, and authors who do cover this concept do so with variable methodologies which make their findings difficult to interpret.

Conclusion

Using a micro-costing methodology, it is possible to identify the cost of any new surgical procedure/technology using formulas that can be adapted to a variety of operations and healthcare systems. We hope that this paper will provide guidance for decision makers and a means for surgeons to harmonise cost reporting in the literature.

This is a preview of subscription content, log in to check access.

Notes

  1. 1.

    Based on an expert's feedback and supported by Intuitive Surgical's recommendations.

  2. 2.

    We excluded articles that only analyse the cost of complications and those for which we did not have access to.

References

  1. 1.

    AACE R International (2013) Recommended practice no. 10s-90: cost engineering terminology, 38, 54

  2. 2.

    Apelgren KN, Blank ML, Slomski CA, Hadjis NS (1994) Reusable instruments are more cost-effective than disposable instruments for laparoscopic cholecystectomy. Surg Endosc 8:32–34

  3. 3.

    Arrow KJ (2004) Uncertainty and the welfare economics of medical care. 1963. Bull World Health Organ 82:141–149

  4. 4.

    Autschbach R, Onnasch JF, Falk V, Walther T, Krüger M, Schilling LO, Mohr FW (2000) The leipzig experience with robotic valve surgery. J Card Surg 15:82–87. doi:10.1111/j.1540-8191.2000.tb00447.x1

  5. 5.

    Bailey JG, Hayden JA, Davis PJB, Liu RY, Haardt D, Ellsmere J (2013) Robotic versus laparoscopic Roux-en-Y gastric bypass (RYGB) in obese adults ages 18 to 65 years: a systematic review and economic analysis. Surg Endosc 28:414–426. doi:10.1007/s00464-013-3217-8

  6. 6.

    Bolenz C, Gupta A, Hotze T, Ho R, Cadeddu JA, Roehrborn CG, Lotan Y (2010) Cost comparison of robotic, laparoscopic, and open radical prostatectomy for prostate cancer. Eur Urol 57:453–458. doi:10.1016/j.eururo.2009.11.008

  7. 7.

    Breitenstein S, Nocito A, Puhan M, Held U, Weber M, Clavien P-A (2008) Robotic-assisted versus laparoscopic cholecystectomy. Ann Surg 247:987–993. doi:10.1097/SLA.0b013e318172501f

  8. 8.

    Broome JTPS (2012) Expense of robotic thyroidectomy: a cost analysis at a single institution. Arch Surg 147:1102–1106. doi:10.1001/archsurg.2012.1870

  9. 9.

    Costi R, Himpens J, Bruyns J, Cadière GB (2003) Robotic fundoplication: from theoretic advantages to real problems. J Am Coll Surg 197:500–507. doi:10.1016/S1072-7515(03)00479-4

  10. 10.

    Cowley G (1992) Introducing ‘Robodoc’. Newsweek 120:86

  11. 11.

    Davies BL, Hibberd RD, Ng WS, Timoney AG, Wickham JE (1991) The development of a surgeon robot for prostatectomies. Proc Inst Mech Eng H 205:35–38

  12. 12.

    Delaney CP, Senagore AJ, Fazio VW (2003) Comparison of robotically performed and traditional laparoscopic colorectal surgery. Dis Colon Rectum 46:1633–1639

  13. 13.

    Dennis T, de Mendonça C, Phalippou J, Collinet P, Boulanger L, Weingertner F, Leblanc E, Narducci F (2012) Study of surplus cost of robotic assistance for radical hysterectomy, versus laparotomy and standard laparoscopy. Gynécol Obstét Fertil 40:77–83

  14. 14.

    Drummond MF, Sculpher MJ, Torrance GW, O’Brien BJ, Stoddart GL (2005) Methods for the economic evaluation of health care programmes, 3rd edn. Oxford University Press, USA

  15. 15.

    El Nakadi I, Mélot C, Closset J, De Moor V, Bétroune K, Feron P, Lingier P, Gelin M (2006) Evaluation of da Vinci Nissen fundoplication clinical results and cost minimization. World J Surg 30:1050–1054. doi:10.1007/s00268-005-7950-6

  16. 16.

    Ficarra V, Novara G, Artibani W, Cestari A, Galfano A, Graefen M, Guazzoni G, Guillonneau B, Menon M, Montorsi F, Patel V, Rassweiler J, Van Poppel H (2009) Retropubic, laparoscopic, and robot-assisted radical prostatectomy: a systematic review and cumulative analysis of comparative studies. Eur Urol 55:1037–1063. doi:10.1016/j.eururo.2009.01.036

  17. 17.

    Finkler SA (1982) The distinction between cost and charges. Ann Intern Med 96:102–109

  18. 18.

    Fourman MM, Saber AA (2012) Robotic bariatric surgery: a systematic review. Surg Obes Relat Dis 8:483–488. doi:10.1016/j.soard.2012.02.012

  19. 19.

    Hagen ME, Pugin F, Chassot G, Huber O, Buchs N, Iranmanesh P, Morel P (2012) Reducing cost of surgery by avoiding complications: the model of robotic Roux-en-Y gastric bypass. Obes Surg 22:52–61. doi:10.1007/s11695-011-0422-1

  20. 20.

    Haute Autorité de Santé (2011), Choix méthodologiques pour l’évaluation économique à la has.

  21. 21.

    http://www.accessdata.fda.gv/scripts/cdrh/cfdcs/cfpmn/pmn.cfm?ID=2016. Accessed 31 May 2013

  22. 22.

    http://www.intuitivesurgical.cm/prducts/davinci_surgical_system/. Accessed 31 May 2013

  23. 23.

    Hubens G, Balliu L, Ruppert M, Gypen B, Tu T, Vaneerdeweg W (2007) Roux-en-Y gastric bypass procedure performed with the da Vinci robot system: is it worth it? Surg Endosc 22:1690–1696. doi:10.1007/s00464-007-9698-6

  24. 24.

    Kwoh YS, Hou J, Jonckheere EA, Hayati S (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 35:153–160

  25. 25.

    Lau S, Vaknin Z, Ramana-Kumar AV, Halliday D, Franco EL, Gotlieb WH (2012) Outcomes and cost comparisons after introducing a robotics program for endometrial cancer surgery. Obstet Gynecol 119:717–724. doi:10.1097/AOG.0b013e31824c0956

  26. 26.

    Lee R, Ng CK, Shariat SF, Borkina A, Guimento R, Brumit KF, Scherr DS (2011) The economics of robotic cystectomy: cost comparison of open versus robotic cystectomy. BJU Int 108:1886–1892. doi:10.1111/j.1464-410X.2011.10114.x

  27. 27.

    Lotan Y, Cadeddu JA, Gettman MT (2004) The new economics of radical prostatectomy: cost comparison of open, laparoscopic, and robot-assisted technique. J Urol 172:1431–1435. doi:10.1097/01.ju.0000139714.09832.47

  28. 28.

    Macario A (2010) What does one minute of operating room time cost? J Clin Anesth 22:233–236. doi:10.1016/j.jclinane.2010.02.003

  29. 29.

    Morgan JA, Thornton BA, Peacock JC, Hollingsworth KW, Smith CR, Oz MC, Argenziano M (2005) Does robotic technology make minimally invasive cardiac surgery too expensive? A hospital cost analysis of robotic and conventional techniques. J Card Surg 20:246–251

  30. 30.

    Morino M, Pellegrino L, Giaccone C, Garrone C, Rebecchi F (2006) Randomized clinical trial of robot-assisted versus laparoscopic Nissen fundoplication. Br J Surg 93:553–558. doi:10.1002/bjs.5325

  31. 31.

    Park CW, Lam ECF, Walsh TM, Karimoto M, Ma AT, Koo M, Hammill C, Murayama K, Lorenzo CSF, Bueno R (2011) Robotic-assisted Roux-en-Y gastric bypass performed in a community hospital setting: the future of bariatric surgery? Surg Endosc 25:3312–3321. doi:10.1007/s00464-011-1714-1

  32. 32.

    Pasic RP, Rizzo JA, Fang H, Ross S, Moore M, Gunnarsson C (2010) Comparing robot-assisted with conventional laparoscopic hysterectomy: impact on cost and clinical outcomes. J Minimally Invasive Gynecol 17:730–738. doi:10.1016/j.jmig.2010.06.009

  33. 33.

    R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0

  34. 34.

    Reichenspurner H, Damiano RJ, Mack M, Boehm DH, Gulbins H, Detter C, Meiser B, Ellgass R, Reichart B (1999) Use of the voice-controlled and computer-assisted surgical system ZEUS for endoscopic coronary artery bypass grafting. J Thorac Cardiovasc Surg 118:11–16

  35. 35.

    Sackier JM, Wang Y (1994) Robotically assisted laparoscopic surgery. From concept to development. Surg Endosc 8:63–66

  36. 36.

    Sarlos D, Kots L, Stevanovic N, Schaer G (2010) Robotic hysterectomy versus conventional laparoscopic hysterectomy: Outcome and cost analyses of a matched case–control study. Eur J Obstet Gynecol Reprod Biol 150:92–96. doi:10.1016/j.ejogrb.2010.02.012

  37. 37.

    Smith A, Kurpad R, Lal A, Nielsen M, Wallen EM, Pruthi RS (2010) Cost analysis of robotic versus open radical cystectomy for bladder cancer. J Urol 183:505–509. doi:10.1016/j.juro.2009.09.081

  38. 38.

    Van Dam P, Hauspy J, Verkinderen L, Trinh XB, van Dam P-J, Van Looy L, Dirix L (2011) Are costs of robot-assisted surgery warranted for gynecological procedures? Obstet Gynecol Int 2011:1–6. doi:10.1155/2011/973830

  39. 39.

    Venkat P, Chen L-M, Young-Lin N, Kiet TK, Young G, Amatori D, Dasverma B, Yu X, Kapp DS, Chan JK (2012) An economic analysis of robotic versus laparoscopic surgery for endometrial cancer: costs, charges and reimbursements to hospitals and professionals. Gynecol Oncol 125:237–240. doi:10.1016/j.ygyno.2011.11.036

  40. 40.

    Wright JDAC (2013) Robotically assisted vs laparoscopic hysterectomy among women with benign gynecologic disease. JAMA 309:689–698. doi:10.1001/jama.2013.186

  41. 41.

    Wright KN, Jonsdottir GM, Jorgensen S, Shah N, Einarsson JI (2012) Costs and outcomes of abdominal, vaginal, laparoscopic and robotic hysterectomies. JSLS 16:519–524. doi:10.4293/108680812X13462882736736

  42. 42.

    Yung E, Gagner M, Pomp A, Dakin G, Milone L, Strain G (2010) Cost comparison of reusable and single-use ultrasonic shears for laparoscopic bariatric surgery. Obes Surg 20:512–518. doi:10.1007/s11695-008-9723-4

Download references

Disclosure

Imad Ismail, Sandrine Wolff, Agnes Gronfier, Didier Mutter, Lee L. Swantröm have no conflicts of interest or financial ties to disclose.

Author information

Correspondence to Imad Ismail.

Appendix

Appendix

Demonstration: medical devices

Objective:

  • TCi = Cost per operation of medical device i’s purchase and maintenance costs.

Let

  • P i  = purchase price

  • M i  = maintenance fee per year

  • E i  = life expectancy expressed in years

  • N i  = mean number of operations per year for which medical device has been used

  • r = discount rate

$${\text{Purchase}}\;{\text{cost}}\;{\text{per}}\;{\text{operation}}\,{ = }\,\frac{{P_{i} }}{{E_{i} \times N_{i} }}$$
$${\text{Yearn's}}\;{\text{maintenance}}\;{\text{discounted}}\;{\text{present}}\;{\text{value}}\, = \,M_{i} \times \frac{ 1}{{\left( { 1+ r} \right)^{n} }}$$
$$\begin{aligned} {\text{Maintenance}}\;{\text{cost}}\;{\text{per}}\;{\text{operation}}\, & = \,\frac{ 1}{{\left( {E_{i} \times N_{i} } \right)}} \times \left( {M_{i} + M_{i} \times \frac{ 1}{{\left( { 1+ r} \right)}} + \cdots + M_{i} \times \frac{ 1}{{\left( { 1+ r} \right)^{{E_{i} }} }}} \right) \\ & = \,\frac{ 1}{{E_{i} \times N_{i} }} \times M_{i} \times \left( { 1+ \frac{ 1}{ 1+ r} + \cdots + \frac{ 1}{{\left( { 1+ r} \right)^{{E_{i} }} }}} \right) \\ & = \,\frac{ 1}{{E_{i} \times N_{i} }} \times M_{i} \times \frac{{ 1- \left(\frac{1} { 1+ r} \right)^{{ E_{i} + 1}} }}{{ 1- \frac{1} { 1+ r} }} \\ & = \,\frac{ 1}{{E_{i} \times N_{i} }} \times M_{i} \times \frac{{ 1- \left( { 1+ r} \right)^{{ - E_{i} - 1}} }}{{ 1- \left( { 1+ r} \right)^{ - 1} }} \\ \end{aligned}$$

By summing the Purchase cost and Maintenance cost per operation:

$${{\text{TC}}_{i} = \frac{ 1}{{E_{i} \times N_{i} }}\left( {P_{i} + M_{i} \times \frac{{ 1- \left( { 1+ r} \right)^{{ - E_{i} - 1}} }}{{ 1- \left( { 1+ r} \right)^{ - 1} }}} \right)}.$$

Demonstration: medical devices

Objective:

  • PCi = Personnel i’s cost per operation

Let

  • W i  = Annual loaded salary

  • L i  = Weekly paid working hours

  • t i  = Mean time spent in operations, expressed in minutes

    $${\text{Monthly}}\;{\text{loaded}}\;{\text{salary}}\,{ = }\,{\frac{{W_{i} }}{ 1 2}}$$
    $${\text{Weekly}}\;{\text{paid}}\;{\text{working}}\;{\text{minutes}}\, = \,{L_{i} \times 6 0}$$
    $${\text{Effective}}\;{\text{working}}\;{\text{days}}\;{\text{per}}\;{\text{month}}\, = \,{\frac{{{\text{Effective}}\;{\text{working}}\;{\text{days}}\;{\text{per}}\;{\text{year}}}}{ 1 2} = \frac{{\left( {{\text{working}}\;{\text{days}}\;{\text{per}}\;{\text{year}} - {\text{Paid}}\;{\text{leave}}} \right)}}{ 1 2}}$$
    $${\text{Effective working weeks per month }} = \,{\frac{{{\text{Effective}}\;{\text{working}}\;{\text{days}}\;{\text{per}}\;{\text{month}}}}{ 5} = \frac{{\left( {{\text{Working}}\;{\text{days}}\;{\text{per}}\;{\text{year}} - {\text{Paid}}\;{\text{leave}}} \right)}}{{\left( { 1 2\times 5} \right)}}}$$
    $$\begin{aligned} {\text{Effective}}\;{\text{working}}\;{\text{minutes}}\;{\text{per}}\;{\text{month}} \\ & \quad {\text{ = Weekly}}\;{\text{paid}}\;{\text{working}}\;{\text{minutes}} \times {\text{effective}}\;{\text{working}}\;{\text{weeks}}\;{\text{per}}\;{\text{month}} \\ & \quad = \left( {L_{i} \times 6 0} \right) \times \frac{{\left( {{\text{working}}\;{\text{days}}\;{\text{per}}\;{\text{year}} - {\text{Paid}}\;{\text{leave}}} \right)}}{ 6 0} \\ & \quad = L_{i} \times \left( {{\text{Effective}}\;{\text{working}}\;{\text{days}}\;{\text{per}}\;{\text{year}}} \right) \\ \end{aligned}$$

Cost per minute of personnel i × Minutes personnel i spent in operation j:

$$\begin{aligned} {\text{PC}}_{i} & = \frac{{W_{i} /12}}{{L_{i} \times \left( {{\text{Effective}}\;{\text{working}}\;{\text{days}}\;{\text{per}}\;{\text{year}}} \right)}} \times t_{i} \\ & = \frac{1}{{12}} \times \frac{{W_{i} \times t_{i} }}{{L_{i} \times E{\text{wd}}_{i} }} \\ \end{aligned}.$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ismail, I., Wolff, S., Gronfier, A. et al. A cost evaluation methodology for surgical technologies. Surg Endosc 29, 2423–2432 (2015). https://doi.org/10.1007/s00464-014-3929-4

Download citation

Keywords

  • Evaluation method
  • Cost-analysis
  • Robot-assisted surgery
  • Surgical technologies
  • Hybrid surgery
  • Health economics