Surgical Endoscopy

, Volume 29, Issue 3, pp 723–733 | Cite as

The effect of duodenojejunostomy and sleeve gastrectomy on type 2 diabetes mellitus and gastrin secretion in Goto-Kakizaki rats

  • Eivind Grong
  • Ingerid Brænne Arbo
  • Ole Kristian Forstrønen Thu
  • Esther Kuhry
  • Bård Kulseng
  • Ronald Mårvik
Article

Abstract

Background

Bariatric surgery is a highly effective treatment of type 2 diabetes in patients with morbid obesity. The weight-loss independent improvement of glycemic control observed after these procedures has led to the discussion whether bariatric surgery can be introduced as treatment for type 2 diabetes in patients with a body mass index < 35 kg/m2. We have studied the effects of two bariatric procedures on type 2 diabetes and on gastrointestinal hormone secretion in a lean diabetic animal model.

Methods

Male Goto-Kakizaki rats, 17–18 weeks old, were randomized into three groups: duodenojejunostomy (DJ), sleeve gastrectomy (SG), or sham operation. During 36 postoperative weeks we evaluated body weight, fasting blood glucose, glucose tolerance, insulin, HbA1c, glucagon-like peptide 1, cholesterol parameters, triglycerides, total ghrelin, and gastrin.

Results

Oral glucose tolerance was significantly improved for both DJ and SG at four weeks after surgery (p < 0.05). At the 34th postoperative week, SG had significantly lower area under the curve during oral glucose tolerance test compared to sham (p = 0.007). SG had significantly lower HbA1c compared to sham at 12 weeks; (mean ± SEM) 4.3 ± 0.1 % versus 5.2 ± 0.3 % (p < 0.05) and compared to both DJ and sham 34 weeks after surgery [median (75 %;25 %)] 5.2 (6.0; 4.3) % versus 7.0 (7.5; 6.7) % and 7.3 (7.6; 6.7)  % (p = 0.009). Serum gastrin levels were markedly elevated for SG compared to DJ and sham; 188.0 (318.0; 121.0) versus 77.5 (114.0; 58.0) and 68.0 (90.0; 59.5) pmol/L (p = 0.004) at six weeks and 192.0 (587.8; 110.8) versus 65.5 (77.0; 59.0) and 69.5 (113.0; 55.5) (p = 0.001) 36 weeks after surgery.

Conclusion

Sleeve gastrectomy induces hypergastrinemia, lowers HbA1c, and improves glycemic control in Goto-Kakizaki rats. Sleeve gastrectomy is superior to duodenojejunostomy as treatment of type 2 diabetes mellitus in this animal model.

Keywords

Duodenojejunostomy Sleeve gastrectomy Type 2 diabetes mellitus Gastrin Glucagon-like peptide 1 Goto-Kakizaki rat 

Notes

Acknowledgments

We would like to thank biomedical laboratory scientist (BLS) Britt Schulze for performing gastrin RIA analysis. We also want to thank BLS Kirsten Rønning for technical assistance and BLS Kristin Graven for performing lipid –and HbA1c analyses. Finally, we would like to thank all the personnel at Department for Comparative Medicine at NTNU for technical assistance and their devoted care for all our animals. This study has been supported by the Norwegian University of Science and Technology (NTNU), The Regional Center for Morbid Obesity (RSSO) and The National Center for Advanced Laparoscopic Surgery (NSALK), St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.

Disclosures

MS Eivind Grong, MSc Ingerid Brænne Arbo, MS Ole Kristian Forstrønen Thu, Dr. Esther Kuhry, Dr. Bård Kulseng and Dr. Ronald Mårvik have no conflicts of interest or financial ties to disclose.

References

  1. 1.
    Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14. doi: 10.1016/j.diabres.2009.10.007 PubMedCrossRefGoogle Scholar
  2. 2.
    Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD, Pories WJ, Bantle JP, Sledge I (2009) Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med 122:248–256.e5. doi: 10.1016/j.amjmed.2008.09.041 PubMedCrossRefGoogle Scholar
  3. 3.
    Schauer PR, Kashyap SR, Wolski K, Brethauer S, Kirwan JP, Pothier CE, Thomas S, Abood B, Nissen SE, Bhatt DL (2012) Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med 366:1567–1576. doi: 10.1056/NEJMoa1200225 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccesi L, Nanni G, Pomp A, Castagneto M, Ghirlanda G, Rubino F (2012) Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med 366:1577–1585. doi: 10.1056/NEJMoa1200111 PubMedCrossRefGoogle Scholar
  5. 5.
    Kashyap SR, Bhatt DL, Wolski K, Wantabe RM, Abdul-Ghani M, Abood B, Pothier CE, Brethauer S, Nissen S, Gupta M, Kirwan JP, Schauer PR (2013) Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: analysis of a randomized controlled trial comparing surgery with intensive medical treatment. Diabetes Care 36: 1–8. doi:  10.2337/dc12-1596
  6. 6.
    Knop FK, Taylor R (2013) Mechanism of metabolic advantages after bariatric surgery: it’s all gastrointestinal factors versus it’s all food restriction. Diabetes Care 36(Suppl 2):S287–S291. doi: 10.2337/dcS13-2032 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Rubino F, Schauer PR, Kaplan LM, Cummings DE (2010) Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action. Annu Rev Med 61:393–411. doi: 10.1146/annurev.med.051308.105148 PubMedCrossRefGoogle Scholar
  8. 8.
    Rubino F, Gagner M, Gentileschi P, Kini S, Fukuyama S, Feng J, Diamond E (2004) The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann Surg 240:236–242. doi: 10.1097/01.sla.0000133117.12646.48 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    National Institutes of Health (1992) Gastrointestinal surgery for severe obesity: National Institutes of Health Consensus Development Conference Statement. Am J Clin Nutr 55:615S–619SGoogle Scholar
  10. 10.
    Rubino F (2008) Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. Diabetes Care 31 (Suppl 2):S290–6. doi:  10.2337/dc08-s271
  11. 11.
    Ryan DH (2012) BMI guidelines for bariatric surgery in diabetes: how low can we go? Diabetes Care 35:1399–1400. doi: 10.2337/dc12-0729 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Rehfeld JF, Stadil F (1973) The effect of gastrin on basal- and glucose-stimulated insulin secretion in man. J Clin Invest 52:1415–1426. doi: 10.1172/JCI107315 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Nørsett KG, Laegreid A, Langaas M, Wörlund S, Fossmark R, Waldum HL, Sandvik AK (2005) Molecular characterization of rat gastric mucosal response to potent acid inhibition. Physiol Genomics 22:24–32. doi: 10.1152/physiolgenomics.00245.2004 PubMedCrossRefGoogle Scholar
  14. 14.
    Sanduleanu S, Stridsberg M, Jonkers D, Hameeteman W, Biemond I, Lundqvist G, Lamers C, Stockbrügger RW (1999) Serum gastrin and chromogranin A during medium- and long-term acid suppressive therapy: a case-control study. Aliment Pharmacol Ther 13:145–153PubMedCrossRefGoogle Scholar
  15. 15.
    Bödvarsdóttir TB, Hove KD, Gotfredsen CF, Pridal L, Vaag A, Karlsen AE, Petersen JS (2010) Treatment with a proton pump inhibitor improves glycaemic control in Psammomys obesus, a model of type 2 diabetes. Diabetologia 53:2220–2223. doi: 10.1007/s00125-010-1825-6 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Suarez-Pinzon WL, Power RF, Yan Y, Wasserfall C, Atkinson M, Rabinovitch A (2008) Combination therapy with glucagon-like peptide-1 and gastrin restores normoglycemia in diabetic NOD mice Diabetes . doi:  10.2337/db08-0688
  17. 17.
    Cao Y, Dubois DC, Sun H, Almon RR, Jusko WJ (2011) Modeling diabetes disease progression and salsalate intervention in Goto-Kakizaki rats. J Pharmacol Exp Ther 339:896–904. doi: 10.1124/jpet.111.185686.environmental PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Gao W, Bihorel S, DuBois DC, Almon RR, Jusko WJ (2011) Mechanism-based disease progression modeling of type 2 diabetes in Goto-Kakizaki rats. J Pharmacokinet Pharmacodyn 38:143–162. doi: 10.1007/s10928-010-9182-0 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Koyama M, Wada R, Mizukami H, Sakuraba H, Odaka H, Ikeda H, Yagihashi S (2000) Inhibition of progressive reduction of islet beta-cell mass in spontaneously diabetic Goto-Kakizaki rats by alpha-glucosidase inhibitor. Metabolism 49:347–352PubMedCrossRefGoogle Scholar
  20. 20.
    Kahn SE (2003) The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 46:3–19. doi: 10.1007/s00125-002-1009-0 PubMedCrossRefGoogle Scholar
  21. 21.
    Jurgens CA, Toukatly MN, Fligner CL, Udayasankar J, Subramanian SL, Zraika S, Aston-Mourney K, Carr DB, Westermark P, Westermark GT, Kahn SE, Hull RL (2011) β-cell loss and β-cell apoptosis in human type 2 diabetes are related to islet amyloid deposition. Am J Pathol 178:2632–2640. doi: 10.1016/j.ajpath.2011.02.036 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Marchesini JD (2007) End-to-side duodeno-jejunostomy with half-and-half biliopancreatic limb for the treatment of type 2 diabetes: a proposal for a simpler technique. Obes Surg 17:138–139CrossRefGoogle Scholar
  23. 23.
    Matthews DR, Hosker JR, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRefGoogle Scholar
  24. 24.
    Kleveland PM, Haugen SE, Waldum HL (1985) The preparation of bioactive 125I-gastrin using iodo-gen as oxidizing agent, and the use of this tracer in receptor studies. Scand J Gastroenterol 20:569–576PubMedCrossRefGoogle Scholar
  25. 25.
    Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of preparative ultracentrifuge. Clin Chem 18:499–502PubMedGoogle Scholar
  26. 26.
    Basso N, Capoccia D, Rizzello M, Abbatini F, Mariani P, Maglio C, Coccia F, Borgonuovo G, De Luca ML, Asprino R, Alessandri G, Casella G, Leonetti F (2011) First-phase insulin secretion, insulin sensitivity, ghrelin, GLP-1, and PYY changes 72 h after sleeve gastrectomy in obese diabetic patients: the gastric hypothesis. Surg Endosc. doi: 10.1007/s00464-011-1755-5 Google Scholar
  27. 27.
    Hove KD, Færch K, Bödvarsdóttir TB, Karlsen AE, Petersen JS, Vaag A (2010) Treatment with a proton pump inhibitor improves glycaemic control in type 2 diabetic patients—a retrospective analysis. Diabetes Res Clin Pract 90:e72–e74. doi: 10.1016/j.diabres.2010.09.007 PubMedCrossRefGoogle Scholar
  28. 28.
    Mefford IN, Wade EU (2009) Proton pump inhibitors as a treatment method for type II diabetes. Med Hypotheses 73:29–32. doi: 10.1016/j.mehy.2009.02.010 PubMedCrossRefGoogle Scholar
  29. 29.
    Singh PK, Hota D, Dutta P, Sachdeva N, Chakrabarti A, Srinivasan A, Singh I, Bhansali A (2012) Pantoprazole improves glycemic control in type 2 diabetes: a randomized, double-blind, placebo-controlled trial. J Clin Endocrinol Metab 97:E2105–E2108. doi: 10.1210/jc.2012-1720 PubMedCrossRefGoogle Scholar
  30. 30.
    Hove KD, Brøns C, Færch K, Lund SS, Petersen JS, Karlsen AE, Rossing P, Rehfeld JF, Vaag A (2013) Effects of 12 weeks’ treatment with a proton pump inhibitor on insulin secretion, glucose metabolism and markers of cardiovascular risk in patients with type 2 diabetes: a randomised double-blind prospective placebo-controlled study. Diabetologia 56:22–30. doi: 10.1007/s00125-012-2714-y PubMedCrossRefGoogle Scholar
  31. 31.
    Rickels MR, Elahi D (2013) Raising serum gastrin to improve glycemic control in (Type 2) diabetes : another limb of the enteroinsular axis? J Clin Endocrinol Metab 97:3915–3916. doi: 10.1210/jc.2012 CrossRefGoogle Scholar
  32. 32.
    Téllez N, Joanny G, Escoriza J, Vilaseca M, Montanya E (2011) Gastrin treatment stimulates {beta}-cell regeneration and improves glucose tolerance in 95 % pancreatectomized rats. Endocrinology 152:2580–2588. doi: 10.1210/en.2011-0066 PubMedCrossRefGoogle Scholar
  33. 33.
    Fosgerau K, Jessen L, Lind Tolborg J, Østerlund T, Schæffer Larsen K, Rolsted K, Brorson M, Jelsing J, Skovlund Ryge Neerup T (2013) The novel GLP-1-gastrin dual agonist, ZP3022, increases β-cell mass and prevents diabetes in db/db mice. Diabetes Obes Metab 15:62–71. doi: 10.1111/j.1463-1326.2012.01676.x PubMedCrossRefGoogle Scholar
  34. 34.
    Inci F, Atmaca M, Ozturk M, Yildiz S, Koceroglu R, Sekeroglu R, Ipecki SH, Kebapcilar L (2014) Pantoprazole may improve beta cell function and diabetes mellitus. J Endocrinol Invest 37:449–454. doi: 10.1007/s40618-013-0040-y
  35. 35.
    Li F, Zhang G, Liang J, Ding X, Cheng Z, Hu S (2009) Sleeve gastrectomy provides a better control of diabetes by decreasing ghrelin in the diabetic Goto-Kakizaki rats. J Gastrointest Surg 13:2302–2308. doi: 10.1007/s11605-009-0997-1 PubMedCrossRefGoogle Scholar
  36. 36.
    Gagner M, Deitel M, Erickson AL, Crosby RD (2013) Survey on laparoscopic sleeve gastrectomy (LSG) at the Fourth International Consensus Summit on Sleeve Gastrectomy. Obes Surg 23:2013–2017. doi: 10.1007/s11695-013-1040-x PubMedCrossRefGoogle Scholar
  37. 37.
    Holle GE, Stiegelmeier M, Reidel J, Ringel R, Siewert R, Eisenmenger W, Holle F (1993) Histologic, immunohistochemical and morphometric study of the mucosa of the total gastric antrum in patiets with carcinoma of the stomach. Surg Gynecol Obstet 176:65–72PubMedGoogle Scholar
  38. 38.
    Speck M, Cho YM, Asadi A, Rubino F, Kieffer TJ (2011) Duodenal-jejunal bypass protects GK rats from {beta}-cell loss and aggravation of hyperglycemia and increases enteroendocrine cells coexpressing GIP and GLP-1. Am J Physiol Endocrinol Metab 300:E923–E932. doi: 10.1152/ajpendo.00422.2010 PubMedCrossRefGoogle Scholar
  39. 39.
    Gavin TP, Sloan RC, Lukosius EZ, Reed MA, Pender JR, Boghossian V, Carter JJ, McKernie RD, Parikh K, Price JW, Tapscott EB, Pories WJ, Dohm GL (2010) Duodenal–jejunal bypass surgery does not increase skeletal muscle insulin signal transduction or glucose disposal in Goto–Kakizaki type 2 diabetic rats. Obes Surg 21:231–237. doi: 10.1007/s11695-010-0304-y CrossRefGoogle Scholar
  40. 40.
    Rubino F, Marescaux J (2004) Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg 239:1–11. doi: 10.1097/01.sla.0000102989.54824.fc PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Wang TT, Hu SY, Gao HD, Zhang GY, Liu CZ, Feng JB, Frezza EE (2008) Ileal transposition controls diabetes as well as modified duodenal jejunal bypass with better lipid lowering in a nonobese rat model of type II diabetes by increasing GLP-1. Ann Surg 247:968–975. doi: 10.1097/SLA.0b013e318172504d PubMedCrossRefGoogle Scholar
  42. 42.
    Klein S, Fabbrini E, Patterson BW, Polonsky KS, Schiavon CA, Correa JL, Salles JE, Wajchenberg BL, Cohen R (2012) Moderate effect of duodenal-jejunal bypass surgery on glucose homeostasis in patients with type 2 diabetes. Obesity (Silver Spring) 20:1266–1272. doi: 10.1038/oby.2011.377 CrossRefGoogle Scholar
  43. 43.
    Geloneze B, Geloneze SR, Fiori C, Stabe C, Tambascia MA, Chaim EA, Astiarraga BD, Pareja JC (2009) Surgery for nonobese type 2 diabetic patients: an interventional study with duodenal-jejunal exclusion. Obes Surg 19:1077–1083. doi: 10.1007/s11695-009-9844-4 PubMedCrossRefGoogle Scholar
  44. 44.
    Sánchez-Pernaute A, Rubio Herrera MA, Pérez-Aguirre E, García Pérez JC, Cabrerizo L, Díez Valladares L, Fernández C, Talavera P, Torres A (2007) Proximal duodenal-ileal end-to-side bypass with sleeve gastrectomy: proposed technique. Obes Surg 17:1614–1618. doi: 10.1007/s11695-007-9287-8 PubMedCrossRefGoogle Scholar
  45. 45.
    Sánchez-Pernaute A, Herrera MAR, Pérez-Aguirre ME, Talavera P, Cabrerizo L, Matía P, Díez-Valladares L, Barabash A, Martín-Antona E, García-Botella A, Garcia-Almenta EM, Torres A (2010) Single anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S). One to three-year follow-up. Obes Surg 20:1720–1726. doi: 10.1007/s11695-010-0247-3 PubMedCrossRefGoogle Scholar
  46. 46.
    Mingrone G, Castagneto-Gissey L (2009) Mechanisms of early improvement/resolution of type 2 diabetes after bariatric surgery. Diabetes Metab 35:518–523. doi: 10.1016/S1262-3636(09)73459-7 PubMedCrossRefGoogle Scholar
  47. 47.
    Sun D, Liu S, Zhang G, Colonne P, Hu C, Han H, Li M, Hu S (2013) Sub-sleeve gastrectomy achieves good diabetes control without weight loss in a non-obese diabetic rat model. Surg Endosc. doi:  10.1007/s00464-013-3272-1
  48. 48.
    Harris MI, Klein R, Welborn TA, Knuiman MW (1992) Onset of NIDDM occurs at least 4–7 yr before clinical diagnosis. Diabetes Care 15:815–819PubMedCrossRefGoogle Scholar
  49. 49.
    Hall TC, Pellen MGC, Sedman PC, Jain PK (2010) Preoperative factors predicting remission of type 2 diabetes mellitus after Roux-en-Y gastric bypass surgery for obesity. Obes Surg 20:1245–1250. doi: 10.1007/s11695-010-0198-8 PubMedCrossRefGoogle Scholar
  50. 50.
    Dixon JB, Chuang L-M, Chong K, Chen S-C, Lambert GW, Straznicky NE, Lambert EA, Lee W-J (2013) Predicting the glycemic response to gastric bypass surgery in patients with type 2 diabetes. Diabetes Care 36:20–26. doi: 10.2337/dc12-0779 PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Inabnet WB 3rd, Milone L, Korner J, Durak E, Ahmed L, Pomrantz J, Harris PE, Bessler M (2009) A rodent model of metabolic surgery for study of type 2 diabetes and positron emission tomography scanning of beta cell mass. SOARD 5:212–217. doi: 10.1016/j.soard.2008.09.007 Google Scholar
  52. 52.
    Hayes JR, Ardill J, Buchanan KD (1975) Gastrin and insulin release. Diabetologia 11:89–92PubMedCrossRefGoogle Scholar
  53. 53.
    Gao W, Jusko WJ (2012) Modeling disease progression and rosiglitazone intervention in type 2 diabetic Goto-Kakizaki rats. J Pharmacol Exp Ther 341:617–625. doi: 10.1124/jpet.112.192419 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Eivind Grong
    • 1
  • Ingerid Brænne Arbo
    • 2
  • Ole Kristian Forstrønen Thu
    • 1
  • Esther Kuhry
    • 1
    • 3
    • 5
  • Bård Kulseng
    • 1
    • 4
  • Ronald Mårvik
    • 1
    • 3
    • 4
    • 5
  1. 1.Department of Cancer Research and Molecular Medicine, Faculty of MedicineNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.Department of Circulation and Medical Imaging, Faculty of MedicineNorwegian University of Science and Technology (NTNU)TrondheimNorway
  3. 3.Department of Gastrointestinal SurgerySt. Olavs Hospital, Trondheim University HospitalTrondheimNorway
  4. 4.Regional Center for Morbid Obesity (RSSO)St. Olavs Hospital, Trondheim University HospitalTrondheimNorway
  5. 5.National Center for Advanced Laparoscopic Surgery (NSALK)St. Olavs Hospital, Trondheim University HospitalTrondheimNorway

Personalised recommendations