Surgical Endoscopy

, Volume 28, Issue 10, pp 2856–2862 | Cite as

Validation of the VBLaST peg transfer task: a first step toward an alternate training standard

  • A. Chellali
  • L. Zhang
  • G. Sankaranarayanan
  • V. S. Arikatla
  • W. Ahn
  • A. Derevianko
  • S. D. Schwaitzberg
  • D. B. Jones
  • M. DeMoya
  • C. G. L. Cao
Article

Abstract

Background

The FLS trainer lacks objective and automated assessments of laparoscopic performance and requires a large supply of relatively expensive consumables. Virtual reality simulation has a great potential as a training and assessment tool of laparoscopic skills and can overcome some limitations of the FLS trainer. This study was carried out to assess the value of our Virtual Basic Laparoscopic Surgical Trainer (VBLaST©) in the peg transfer task compared to the FLS trainer and its ability to differentiate performance between novice, intermediate, and expert groups.

Methods

Thirty subjects were divided into three groups: novices (PGY1-2, n = 10), intermediates (PGY3-4, n = 10), and experts (PGY5, surgical fellows and attendings, n = 10). All subjects performed ten trials of the peg transfer task on each simulator. Assessment of laparoscopic performance was based on FLS scoring while a questionnaire was used for subjective evaluation.

Results

The performance scores in the two simulators were correlated, though subjects performed significantly better in the FLS trainer. Experts performed better than novices only on the FLS trainer while no significant differences were observed between the other groups. Moreover, a significant learning effect was found on both trainers, with a greater improvement of performance on the VBLaST©. Finally, 82.6 % of the subjects preferred the FLS over the VBLaST© for surgical training which could be attributed to the novelty of the VR technology and existing deficiencies of the user interface for the VBLaST©.

Conclusion

This study demonstrated that the VBLaST© reproduced faithfully some aspects of the FLS peg transfer task (such as color, size, and shape of the peg board, etc.) while other aspects require additional development. Future improvement of the user interface and haptic feedback will enhance the value of the system as an alternative to the FLS as the standard training tool for laparoscopic surgery skills.

Keywords

Surgical training Virtual reality (VR) Virtual Basic Laparoscopic Surgical Trainer (VBLaST) Fundamentals of Laparoscopic Skills (FLS) Force feedback 

References

  1. 1.
    Maithel S, Sierra R, Korndorffer J, Neumann P, Dawson S, Callery M, Jones D, Scott D (2006) Construct and face validity of MIST-VR, Endotower, and CELTS: are we ready for skills assessment using simulators? Surg Endosc 20(1):104–112PubMedCrossRefGoogle Scholar
  2. 2.
    Munz Y, Kumar B, Moorthy K, Bann S, Darzi A (2004) Laparoscopic virtual reality and box trainers: is one superior to the other? Surg Endosc 18(3):485–494PubMedCrossRefGoogle Scholar
  3. 3.
    Cao C, MacKenzie C, Payandeh S (1996) Task and motion analyses in endoscopic surgery. In: Proceedings of the ASME dynamic systems and controls division (fifth annual symposium on haptic interfaces for virtual environment and teleoperator systems)Google Scholar
  4. 4.
    Cao C, MacKenzie L, Payandeh S (1996) Precision and safety constraints in laparoscopic surgery. J Sport Exerc Psychol 18Google Scholar
  5. 5.
    Cao C, MacKenzie L (1997) Direct, 2-D vs. 3-D endoscopic viewing and surgical task performance. A symposium on evolving technologies: surgeons’ performance of surgical tasks. J Sport Exercise Psychol 19Google Scholar
  6. 6.
    Powers T, Murayama K, Toyama M, Murphy S, Denham E, Derossis A, Joehl R (2002) House staff performance is improved by participation in a laparoscopic skills curriculum. Am J Surg 184:626–629PubMedCrossRefGoogle Scholar
  7. 7.
    Fried GM (2008) FLS assessment of competency using simulated laparoscopic tasks. J Gastrointest Surg 12(2):210–212PubMedCrossRefGoogle Scholar
  8. 8.
    Fraser SA, Klassen DR, Feldman LS, Ghitulescu GA, Stanbridge D, Fried GM (2003) Valuating laparoscopic skills: setting the pass/fail score for the MISTELS system. Surg Endosc 17(6):964–967PubMedCrossRefGoogle Scholar
  9. 9.
    Peters J, Fried G, Swanstrom L, Soper N, Sillin L, Schirmer B, Hoffman K, Committee SAGESFLS (2004) Development and validation of a comprehensive program of education and assessment of the basic fundamentals of laparoscopic surgery. Surgery 135(1):21–27PubMedCrossRefGoogle Scholar
  10. 10.
    Botden S, Buzink S, Schijven MJJ (2007) Augmented versus virtual reality laparoscopic simulation: what is the difference? World J Surg 31(4):764–772PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Grantcharov T, Rosenberg J, Pahle E, Fench P (2001) Virtual reality computer simulation. Surg Endosc 15:242–244PubMedCrossRefGoogle Scholar
  12. 12.
    Reich O, Noll M, Gratzke C, Bachmann A, Waidelich R, Seitz M, Schlenker B, Baumgartner R, Hofstetter A, Stief C (2006) High-level virtual reality simulator for endourologic procedures of lower urinary tract. Urology 67(6):1144–1148PubMedCrossRefGoogle Scholar
  13. 13.
    Dang T, Annaswamy T, Srinivasan M (2001) Development and evaluation of an epidural injection simulator with force feedback for medical training. Stud Health Technol Inform 81:97–102PubMedGoogle Scholar
  14. 14.
    Chellali A, Dumas C, Milleville-Pennel I (2012) Haptic communication to support biopsy procedures learning in virtual environments. Presence Teleoperators Virtual Environ 21(4):470–489CrossRefGoogle Scholar
  15. 15.
    Panait L, Akkary E, Bell R, Roberts K, Dudrick S, Duffy A (2009) The role of haptic feedback in laparoscopic simulation training. J Surg Res 156(2):312–316PubMedCrossRefGoogle Scholar
  16. 16.
    Seymour NE, Gallagher AG, Roman SA, O’Bri BMK, Andersen DK, Satava RM (2002) Virtual reality training improves operating room performance results of a randomized, double-blinded study. Ann Surg 236(4):458–464PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Ström P, Hedman L, Särnå L, Kjellin A, Wredmark T, Felländer-Tsai L (2006) Early exposure to haptic feedback enhances performance in surgical simulator training: a prospective randomized crossover study in surgical residents. Surg Endosc 20(9):1383–1388PubMedCrossRefGoogle Scholar
  18. 18.
    Sutherland LM, Middleton PF, Anthony A, Hamdorf J, Cregan P, Scott D, Maddern GJ (2006) Surgical simulation: a systematic review. Ann Surg 243(3):291–300PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Aggarwal R, Grantcharov T, Eriksen J, Blirup D, Kristiansen V, Funch-Jensen P, Darzi A (2006) An evidence-based virtual reality training program for novice laparoscopic surgeons. Ann Surg 244(2):310–314PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Zhang A, Hünerbein M, Dai Y, Schlag P, Beller S (2008) Construct validity testing of a laparoscopic surgery simulator (Lap Mentor): evaluation of surgical skill with a virtual laparoscopic training simulator. Surg Endosc 22(6):1440–1444PubMedCrossRefGoogle Scholar
  21. 21.
    Epona Medical | LAP-X. http://www.lapx.eu/en/lapx.html. Accessed 26 June 2013
  22. 22.
    Iwata N, Fujiwara M, Kodera Y, Tanaka C, Ohashi N, Nakayama G, Koike M, Nakao A (2011) Construct validity of the LapVR virtual-reality surgical simulator. Surg Endosc 25(2):423–428PubMedCrossRefGoogle Scholar
  23. 23.
    Sankaranarayanan G, Lin H, Arikatla V, Mulcare M, Zhang L, Derevianko A, Lim R, Fobert D, Cao C, Schwaitzberg S, Jones D, De S (2010) Preliminary face and construct validation study of a virtual basic laparoscopic skill trainer. J Laparoendosc Adv Surg Tech A 20(2):153–157PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Zhang L, Grosdemouge C, Sankaranarayanan G, Anh W, Sreekanth A, De S, Jones D, Schwaitzberg S, Cao C (2012) The added value of virtual reality technology and force feedback for surgical training simulators. In: Proceedings of the IEA 2012 Meeting, Recife, BrazilGoogle Scholar
  25. 25.
    Arikatla V, Sankaranarayanan G, Ahn W, Chellali A, De S, Cao C, Hwabejire J, DeMoya M, Schwaitzberg S, Jones D (2013) Face and construct validation of a virtual peg transfer simulator. Surg Endosc 27(5):1721–1729PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Zhang L, Sankaranarayanan G, Arikatla VS, Ahn W, Grosdemouge C, Rideout JM, Epstein SK, De S, Schwaitzberg SD, Jones DB, Cao C (2013) Characterizing the learning curve of the VBLaST-PT© (virtual basic laparoscopic skill trainer). Surg Endosc 27(10):3603–3615PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Chellali
    • 1
    • 2
  • L. Zhang
    • 3
  • G. Sankaranarayanan
    • 4
  • V. S. Arikatla
    • 4
  • W. Ahn
    • 4
  • A. Derevianko
    • 5
  • S. D. Schwaitzberg
    • 1
  • D. B. Jones
    • 6
  • M. DeMoya
    • 5
  • C. G. L. Cao
    • 7
  1. 1.Department of Surgery, Cambridge Health AllianceHarvard Medical SchoolCambridgeUSA
  2. 2.Department of Computer EngineeringUniversity of Evry, IBISC LaboratoryEvryFrance
  3. 3.Department of Mechanical EngineeringTufts UniversityMedfordUSA
  4. 4.Center for Modeling, Simulation and Imaging in MedicineRensselaer Polytechnic InstituteTroyUSA
  5. 5.Department of SurgeryMassachusetts General HospitalBostonUSA
  6. 6.Department of SurgeryBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUSA
  7. 7.Department of Biomedical, Industrial and Human Factors EngineeringWright State UniversityDaytonUSA

Personalised recommendations