Surgical Endoscopy

, Volume 28, Issue 7, pp 2227–2235 | Cite as

Stereoscopic augmented reality for laparoscopic surgery

  • Xin KangEmail author
  • Mahdi Azizian
  • Emmanuel Wilson
  • Kyle Wu
  • Aaron D. Martin
  • Timothy D. Kane
  • Craig A. Peters
  • Kevin Cleary
  • Raj Shekhar
Dynamic Manuscript



Conventional laparoscopes provide a flat representation of the three-dimensional (3D) operating field and are incapable of visualizing internal structures located beneath visible organ surfaces. Computed tomography (CT) and magnetic resonance (MR) images are difficult to fuse in real time with laparoscopic views due to the deformable nature of soft-tissue organs. Utilizing emerging camera technology, we have developed a real-time stereoscopic augmented-reality (AR) system for laparoscopic surgery by merging live laparoscopic ultrasound (LUS) with stereoscopic video. The system creates two new visual cues: (1) perception of true depth with improved understanding of 3D spatial relationships among anatomical structures, and (2) visualization of critical internal structures along with a more comprehensive visualization of the operating field.


The stereoscopic AR system has been designed for near-term clinical translation with seamless integration into the existing surgical workflow. It is composed of a stereoscopic vision system, a LUS system, and an optical tracker. Specialized software processes streams of imaging data from the tracked devices and registers those in real time. The resulting two ultrasound-augmented video streams (one for the left and one for the right eye) give a live stereoscopic AR view of the operating field. The team conducted a series of stereoscopic AR interrogations of the liver, gallbladder, biliary tree, and kidneys in two swine.


The preclinical studies demonstrated the feasibility of the stereoscopic AR system during in vivo procedures. Major internal structures could be easily identified. The system exhibited unobservable latency with acceptable image-to-video registration accuracy.


We presented the first in vivo use of a complete system with stereoscopic AR visualization capability. This new capability introduces new visual cues and enhances visualization of the surgical anatomy. The system shows promise to improve the precision and expand the capacity of minimally invasive laparoscopic surgeries.


Augmented reality Surgical visualization Stereoscopic visualization Multimodality image fusion Laparoscopic surgery 



The funding for this project came from internal institutional sources.


X. Kang, M. Azizian, E. Wilson, K. Wu, A. D. Martin, T. D. Kane, C. A. Peters, K. Cleary, and R. Shekhar have no conflicts of interest or financial ties to disclose.

Supplementary material

Supplementary material 1 (MOV 18773 kb)

Supplementary material 2 (MOV 64925 kb)

Supplementary material 3 (MOV 6371 kb)


  1. 1.
    Himal HS (2002) Minimally invasive (laparoscopic) surgery. Surg Endosc 16(12):1647–1652PubMedCrossRefGoogle Scholar
  2. 2.
    Rosen M, Ponsky J (2001) Minimally invasive surgery. Endoscopy 33(4):358–366PubMedCrossRefGoogle Scholar
  3. 3.
    Storz P, Buess GF, Kunert W, Kirschniak A (2012) 3D HD versus 2D HD: surgical task efficiency in standardised phantom tasks. Surg Endosc 26(5):1454–1460PubMedCrossRefGoogle Scholar
  4. 4.
    Smith R, Day A, Rockall T, Ballard K, Bailey M, Jourdan I (2012) Advanced stereoscopic projection technology significantly improves novice performance of minimally invasive surgical skills. Surg Endosc 26(6):1522–1527PubMedCrossRefGoogle Scholar
  5. 5.
    Nakamoto M, Ukimura O, Faber K, Gill IS (2012) Current progress on augmented reality visualization in endoscopic surgery. Curr Opin Urol 22(2):121–126PubMedCrossRefGoogle Scholar
  6. 6.
    Linte CA, Wiles A, Moore J, Wedlake C, Peters TM (2008) Virtual reality-enhanced ultrasound guidance for atrial ablation: in vitro epicardial study. Med Image Comput Comput Assist Interv 11(Pt 2):644–651PubMedGoogle Scholar
  7. 7.
    Leven J, Burschka D, Kumar R, Zhang G, Blumenkranz S, Dai XD, Awad M, Hager GD, Marohn M, Choti M, Hasser C, Taylor RH (2005) DaVinci canvas: a telerobotic surgical system with integrated, robot-assisted, laparoscopic ultrasound capability. Med Image Comput Comput Assist Interv 8:811–818PubMedGoogle Scholar
  8. 8.
    Su LM, Vagvolgyi BP, Agarwal R, Reiley CE, Taylor RH, Hager GD (2009) Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Urology 73(4):896–900PubMedCrossRefGoogle Scholar
  9. 9.
    Cheung CL, Wedlake C, Moore J, Pautler SE, Ahmad A, Peters TM (2009) Fusion of stereoscopic video and laparoscopic ultrasound for minimally invasive partial nephrectomy. Proc SPIE 7261:726109–726110CrossRefGoogle Scholar
  10. 10.
    Cheung CL, Wedlake C, Moore J, Pautler SE, Peters TM (2010) Fused video and ultrasound images for minimally invasive partial nephrectomy: a phantom study. Med Image Comput Comput Assist Interv 13(Pt 3):408–415PubMedGoogle Scholar
  11. 11.
    Ieiri S, Uemura M, Konishi K, Souzaki R, Nagao Y, Tsutsumi N, Akahoshi T, Ohuchida K, Ohdaira T, Tomikawa M, Tanoue K, Hashizume M, Taguchi T (2012) Augmented reality navigation system for laparoscopic splenectomy in children based on preoperative CT image using optical tracking device. Pediatr Surg Int 28(4):341–346PubMedCrossRefGoogle Scholar
  12. 12.
    Teber D, Guven S, Simpfendörfer T, Baumhauer M, Güven EO, Yencilek F, Gözen AS, Rassweiler J (2009) Augmented reality: a new tool to improve surgical accuracy during laparoscopic partial nephrectomy? Preliminary in vitro and in vivo results. Eur Urol 56(2):332–338PubMedCrossRefGoogle Scholar
  13. 13.
    Simpfendörfer T, Baumhauer M, Müller M, Gutt CN, Meinzer HP, Rassweiler JJ, Guven S, Teber D (2011) Augmented reality visualization during laparoscopic radical prostatectomy. J Endourol 25(12):1841–1845PubMedCrossRefGoogle Scholar
  14. 14.
    Yaron A, Bar-Zohar M, Horesh N (2007) Miniature stereoscopic video system provides real-time 3D registration and image fusion for minimally invasive surgery. Proc SPIE 6490, Stereoscopic Displays and Virtual Reality Systems XIV 649009Google Scholar
  15. 15.
    Hostettler A, George D, Rémond Y, Nicolau SA, Soler L, Marescaux J (2010) Bulk modulus and volume variation measurement of the liver and the kidneys in vivo using abdominal kinetics during free breathing. Comput Methods Progr Biomed 100(2):149–157CrossRefGoogle Scholar
  16. 16.
    Hostettler A, Nicolau SA, Rémond Y, Marescaux J, Soler L (2010) A real-time predictive simulation of abdominal viscera positions during quiet free breathing. Prog Biophys Mol Biol 103(2–3):169–184PubMedCrossRefGoogle Scholar
  17. 17.
    Shekhar R, Dandekar O, Bhat V, Philip M, Lei P, Godinez C, Sutton E, George I, Kavic S, Mezrich R, Park A (2010) Live augmented reality: a new visualization method for laparoscopic surgery using continuous volumetric computed tomography. Surg Endosc 24(8):1976–1985PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334CrossRefGoogle Scholar
  19. 19.
    Yaniv Z, Foroughi P, Kang HJ, Boctor E (2011) Ultrasound calibration framework for the image-guided surgery toolkit. Medical Imaging 2011: visualization, image-guided procedures, and modeling. Proc SPIE 7964:79641N–1–79641N–11CrossRefGoogle Scholar
  20. 20.
    Lu F, Hartley R (2007) A fast optimal algorithm for L2 triangulation. ACCV 2:279–288Google Scholar
  21. 21.
    Chen TK, Heffter T, Lasso A, Pinter C (2011) Automated intraoperative calibration for prostate cancer brachytherapy. Med Phys 38(11):6285–6299CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xin Kang
    • 1
    Email author
  • Mahdi Azizian
    • 1
  • Emmanuel Wilson
    • 1
  • Kyle Wu
    • 1
  • Aaron D. Martin
    • 1
  • Timothy D. Kane
    • 1
  • Craig A. Peters
    • 1
  • Kevin Cleary
    • 1
  • Raj Shekhar
    • 1
  1. 1.Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National Medical CenterWashingtonUSA

Personalised recommendations