Surgical Endoscopy

, Volume 28, Issue 4, pp 1388–1398 | Cite as

The end of robot-assisted laparoscopy? A critical appraisal of scientific evidence on the use of robot-assisted laparoscopic surgery

  • Jeroen Heemskerk
  • Nicole D. Bouvy
  • Cor G. M. I. Baeten
Letter To the Editor

Abstract

Background

Robot-assisted laparoscopy has been used in a wide variety of surgical fields; however, the financial costs involved are high and convincing proof of superiority in terms of quality of life, cost effectiveness and survival is often lacking. Possibly, there might be small benefits for the patient or for the surgeon’s health that might warrant the use of robotics in limited fields of surgery.

Methods

We performed a critical appraisal of the literature, searching for scientific evidence supporting the use of robotics in daily laparoscopic surgery.

Results

Convincing evidence supporting the use of robotics is lacking.

Conclusion

In an era of worldwide economic crisis, it is about time to start a critical discussion as to whether we should drastically limit, or even abandon, the use of robot-assisted laparoscopic surgery and focus on more cost-effective strategies of healthcare improvement. We suggest the use of robotics should be limited to well-powered, randomized clinical trials in a limited field of research.

Keywords

Robot Robotic Robot-assisted Laparoscopy Laparoscopic Surgery 

References

  1. 1.
    Tan CT, Cheah WK, Delbridge L (2008) “Scarless” (in the neck) endoscopic thyroidectomy (SET): an evidence-based review of published techniques. World J Surg 32(7):1349–1357PubMedGoogle Scholar
  2. 2.
    Lee J, Lee JH, Nah KY et al (2011) Comparison of endoscopic and robotic thyroidectomy. Ann Surg Oncol 18(5):1439–1446PubMedGoogle Scholar
  3. 3.
    Fan LJ, Jiang J (2012) Present and future of robot-assisted endoscopic thyroid surgery. Chin Med J (Engl) 125(5):926–931Google Scholar
  4. 4.
    Yoo H, Chae BJ, Park HS et al (2012) Comparison of surgical outcomes between endoscopic and robotic thyroidectomy. J Surg Oncol 105(7):705–708PubMedGoogle Scholar
  5. 5.
    Vriens MR, Kist JWK, Lodewijk L et al (2013) Robotgeassisteerde transaxillaire schildklieroperatie. Ned Tijdschr Geneeskd 157:A5841PubMedGoogle Scholar
  6. 6.
    Landry CS, Grubbs EG, Warneke CL et al (2012) Robot-assisted transaxillary thyroid surgery in the United States: is it comparable to open thyroid lobectomy? Ann Surg Oncol 19(4):1269–1274PubMedGoogle Scholar
  7. 7.
    Kim WW, Kim JS, Hur SM et al (2011) Is robotic surgery superior to endoscopic and open surgeries in thyroid cancer? World J Surg 35(4):779–784PubMedGoogle Scholar
  8. 8.
    Soop M, Nelson H (2008) Is laparoscopic resection appropriate for colorectal adenocarcinoma? Adv Surg 42:205–217PubMedGoogle Scholar
  9. 9.
    Fleshman J, Sargent DJ, Green E et al (2007) Laparoscopic colectomy for cancer is not inferior to open surgery based on 5-year data from the COST Study Group Trial. Ann Surg 246(4):655–662PubMedGoogle Scholar
  10. 10.
    Veldkamp R, Kuhry E, Hop WC et al (2005) Laparoscopic surgery versus open surgery for colon cancer: short-term outcomes of a randomised trial. Lancet Oncol 6(7):477–484PubMedGoogle Scholar
  11. 11.
    Guillou PJ, Quirke P, Thorpe H et al (2005) Short-term endpoints of conventional versus laparoscopic-assisted surgery in patients with colorectal cancer (MRC CLASICC trial): multicentre, randomised controlled trial. Lancet 365(9472):1718–1726PubMedGoogle Scholar
  12. 12.
    Hewett PJ, Allardyce RA, Bagshaw PF et al (2008) Short-term outcomes of the Australasian randomized clinical study comparing laparoscopic and conventional open surgical treatments for colon cancer: the ALSSaS trial. Ann Surg 248(5):728–738PubMedGoogle Scholar
  13. 13.
    Trastulli S, Desiderio J, Farinacci F et al (2013) Robotic right colectomy for cancer with intracorporeal anastomosis: short-term outcomes from a single institution. Int J Colorectal Dis 28(6):807–814PubMedGoogle Scholar
  14. 14.
    Park JS, Choi GS, Park SY et al (2012) Randomized clinical trial of robot-assisted versus standard laparoscopic right colectomy. Br J Surg 99(9):1219–1226PubMedGoogle Scholar
  15. 15.
    Antoniou SA, Antoniou GA, Koch OO et al (2012) Robot-assisted laparoscopic surgery of the colon and rectum. Surg Endosc 26(1):1–11PubMedGoogle Scholar
  16. 16.
    deSouza AL, Prasad LM, Park JJ et al (2010) Robotic assistance in right hemicolectomy: is there a role? Dis Colon Rectum 53(7):1000–1006PubMedGoogle Scholar
  17. 17.
    Delaney CO, Lynch AC, Denagore AJ et al (2003) Comparison of robotically performed and traditional laparoscopic colorectal surgery. Dis Colon Rectum 46(12):1633–1639PubMedGoogle Scholar
  18. 18.
    Fung AK, Aly EH (2013) Robotic colonic surgery: is it advisable to commence a new learning curve? Dis Colon Rectum 56(6):786–796PubMedGoogle Scholar
  19. 19.
    Kellokumpu IH, Kairaluoma MI, Nuorva KP et al (2012) Short- and long-term outcome following laparoscopic versus open resection for carcinoma of the rectum in the multimodal setting. Dis Colon Rectum 55(8):854–863PubMedGoogle Scholar
  20. 20.
    Stamopoulos P, Theodoropoulos GE, Papailiou J et al (2009) Prospective evaluation of sexual function after open and laparoscopic surgery for rectal cancer. Surg Endosc 23(12):2665–2674PubMedGoogle Scholar
  21. 21.
    Ng SS, Leung KL, Lee JF et al (2009) Long-term morbidity and oncologic outcomes of laparoscopic-assisted anterior resection for upper rectal cancer: ten-year results of a prospective, randomized trial. Dis Colon Rectum 52(4):558–566PubMedGoogle Scholar
  22. 22.
    deSouza AL, Prasad LM, Ricci J et al (2011) A comparison of open and robotic total mesorectal excision for rectal adenocarcinoma. Dis Colon Rectum 54(3):275–282PubMedGoogle Scholar
  23. 23.
    deSouza AL, Prasad LM, Marecik SJ et al (2010) Total mesorectal excision for rectal cancer: the potential advantage of robotic assistance. Dis Colon Rectum 43(12):1611–1617Google Scholar
  24. 24.
    Park JS, Choi GS, Lim KH et al (2010) Robotic-assisted versus laparoscopic surgery for low rectal cancer: a case-matched analysis of short-term outcomes. Ann Surg Oncol 17(12):3195–3202PubMedGoogle Scholar
  25. 25.
    Kim JC, Yang SS, Jang TY et al (2012) Open versus robot-assisted sphincter-saving operations in rectal cancer patients: techniques and comparison of outcomes between groups of 100 matched patients. Int J Med Robot 8(4):468–475PubMedGoogle Scholar
  26. 26.
    Trastulli S, Farinella E, Cirocchi R et al (2012) Robotic resection compared with laparoscopic rectal resection for cancer: systematic review and meta-analysis of short-term outcome. Colorectal Dis 14(4):e134–e156PubMedGoogle Scholar
  27. 27.
    Kwak JM, Kim SH, Kim J et al (2011) Robotic vs laparoscopic resection of rectal cancer: short-term outcomes of a case-control study. Dis Colon Rectum 54(2):151–156PubMedGoogle Scholar
  28. 28.
    Park SY, Choi GS, Park JS et al (2013) Short-term clinical outcome of robot-assisted intersphincteric resection for low rectal cancer: a retrospective comparison with conventional laparoscopy. Surg Endosc 27(1):48–55PubMedGoogle Scholar
  29. 29.
    Memon S, Heriot AG, Murphy DG et al (2012) Robotic versus laparoscopic proctectomy for rectal cancer: a meta-analysis. Ann Surg Oncol 19(7):2095–2101PubMedGoogle Scholar
  30. 30.
    Kim JY, Kim NK, Lee KY et al (2012) A comparative study of voiding and sexual function after total mesorectal excision with autonomic nerve preservation for rectal cancer: laparoscopic versus robotic surgery. Ann Surg Oncol 19(8):2485–2493PubMedGoogle Scholar
  31. 31.
    D’hoore A, Penninckx F (2006) Laparoscopic ventral recto(colpo)pexy for rectal prolapse: surgical technique and outcome for 109 patients. Surg Endosc 20(12):1919–1923PubMedGoogle Scholar
  32. 32.
    D’hoore A, Cadoni R, Penninckx F (2004) Long-term outcome of laparoscopic ventral rectopexy for rectal prolapse. Br J Surg 91(11):1500–1505PubMedGoogle Scholar
  33. 33.
    Zittel TT, Manncke K, Haug S et al (2000) Functional results after laparoscopic rectopexy for rectal prolapse. J Gastrointest Surg 4(6):632–641PubMedGoogle Scholar
  34. 34.
    Rose J, Schneider C, Scheidbach H et al (2002) Laparoscopic treatment of rectal prolapse: experience gained in a prospective multicenter study. Langenbecks Arch Surg 387(3–4):130–137PubMedGoogle Scholar
  35. 35.
    Heemskerk J, de Hoog DE, van Gemert WG et al (2007) Robot-assisted vs. conventional laparoscopic rectopexy for rectal prolapse: a comparative study on costs and time. Dis Colon Rectum 50(11):1825–1830PubMedCentralPubMedGoogle Scholar
  36. 36.
    De Hoog DE, Heemskerk J, Nieman FH et al (2009) Recurrence and functional results after open versus conventional laparoscopic versus robot-assisted laparoscopic rectopexy for rectal prolapse: a case control study. Int J Colorectal Dis 24(10):1201–1206PubMedCentralPubMedGoogle Scholar
  37. 37.
    McHoney M, Wade AM, Eaton S et al (2011) Clinical outcome of a randomized controlled blinded trial of open versus laparoscopic Nissen fundoplication in infants and children. Ann Surg 254(2):209–216PubMedGoogle Scholar
  38. 38.
    Draaisma WA, Buskens E, Bais JE et al (2006) Randomized clinical trial and follow-up study of cost-effectiveness of laparoscopic versus conventional Nissen fundoplication. Br J Surg 93(6):690–697PubMedGoogle Scholar
  39. 39.
    Draaisma WA, Rijnhart-de Jong HG, Broeders IA et al (2006) Five-year subjective and objective results of laparoscopic and conventional Nissen fundoplication: a randomized trial. Ann Surg 244(1):34–41PubMedCentralPubMedGoogle Scholar
  40. 40.
    Salminen P, Hurme S, Ovaska J (2012) Fifteen-year outcome of laparoscopic and open Nissen fundoplication: a randomized clinical trial. Ann Thorac Surg 93(1):228–233PubMedGoogle Scholar
  41. 41.
    Salminen PT, Hiekkanen HI, Rantala AP et al (2007) Comparison of long-term outcome of laparoscopic and conventional Nissen fundoplication: a prospective randomized study with an 11-year follow-up. Ann Surg 246(2):201–206PubMedCentralPubMedGoogle Scholar
  42. 42.
    Ackroyd R, Watson DI, Majeed AW et al (2004) Randomized clinical trial of laparoscopic versus open fundoplication for gastro-oesophageal reflux disease. Br J Surg 91(8):975–982PubMedGoogle Scholar
  43. 43.
    Laine S, Rantala A, Gullichsen R et al (1997) Laparoscopic vs conventional Nissen fundoplication: a prospective randomized study. Surg Endosc 11(5):441–444PubMedGoogle Scholar
  44. 44.
    Broeders IA, Rijnhart-de Jong HG, Draaisma WA et al (2009) Ten-year outcome of laparoscopic and conventional Nissen fundoplication: randomized clinical trial. Ann Surg 250(5):698–706PubMedGoogle Scholar
  45. 45.
    Pelgrims N, Closset J, Sperduto N et al (2001) What did the laparoscopic Nissen approach of the gastro-oesophageal reflux really change for the patient 8 years later? Acta Chir Belg 101(2):68–72PubMedGoogle Scholar
  46. 46.
    Draaisma WA, Ruurda JP, Scheffer RC et al (2006) Randomized clinical trial of standard laparoscopic versus robot-assisted laparoscopic Nissen fundoplication for gastro-oesophageal reflux disease. Br J Surg 93(11):1351–1359PubMedGoogle Scholar
  47. 47.
    Copeland DR, Boneti C, Kokoska ER et al (2008) Evaluation of initial experience and comparison of the da Vinci® surgical system with established laparoscopic and open pediatric Nissen fundoplication surgery. JSLS 12(3):238–240PubMedCentralPubMedGoogle Scholar
  48. 48.
    Muller-Stich BP, Reiter MA, Wente MN et al (2007) Robot-assisted versus conventional laparoscopic fundoplication: short-term outcome of a pilot randomized controlled trial. Surg Endosc 21(10):1800–1805PubMedGoogle Scholar
  49. 49.
    Morino M, Pellegrino L, Giaccone C et al (2006) Randomized clinical trial of robot-assisted versus laparoscopic Nissen fundoplication. Br J Surg 93(5):553–558PubMedGoogle Scholar
  50. 50.
    Heemskerk J, van Gemert WG, Greve JW et al (2007) Robot-assisted versus conventional laparoscopic Nissen fundoplication: a comparative retrospective study on costs and time consumption. Surg Laparosc Endosc Percutan Tech 17(1):1–4PubMedGoogle Scholar
  51. 51.
    Wang Z, Zheng Q, Jin Z (2012) Meta-analysis of robot-assisted versus conventional laparoscopic Nissen fundoplication for gastro-oesophageal reflux disease. ANZ J Surg 82(3):112–117PubMedGoogle Scholar
  52. 52.
    Masoomi H, Kim H, Reavis KM et al (2011) Analysis of factors predictive of gastro-intestinal tract leak in laparoscopic and open gastric bypass. Arch Surg 146(9):1048–1051PubMedGoogle Scholar
  53. 53.
    Nguyen NT, Masoomi H, Laugenour K et al (2011) Predictive factors of mortality in bariatric surgery: data from the Nationwide Inpatient Sample. Surgery 150(2):347–351PubMedGoogle Scholar
  54. 54.
    Tian HL, Tian JH, Yang KH et al (2011) The effects of laparoscopic vs. open gastric bypass for morbid obesity: a systematic review and meta-analysis of randomized controlled trials. Obes Rev 12(4):254–260PubMedGoogle Scholar
  55. 55.
    Ayloo SM, Addeo P, Buchs NC et al (2011) Robot-assisted versus laparoscopic Roux-en-Y gastric bypass: is there a difference in outcomes? World J Surg 35(3):637–642PubMedGoogle Scholar
  56. 56.
    Sanchez BR, Mohr CJ, Morton JM et al (2005) Comparison of totally robotic laparoscopic Roux-en-Y gastric bypass and traditional laparoscopic Roux-en-Y gastric bypass. Surg Obes Relat Dis 1(6):549–554PubMedGoogle Scholar
  57. 57.
    Scozzari G, Rebecchi F, Millo P et al (2011) Robot-assisted gastrojejunal anastomosis does not improve the results of the laparoscopic Roux-en-Y gastric bypass. Surg Endosc 25(2):597–603PubMedGoogle Scholar
  58. 58.
    Hubens G, Balliu L, Ruppert M et al (2008) Roux-en-Y gastric bypass procedure performed with the da Vinci® robot system: is it worth it? Surg Endosc 22(7):1690–1696PubMedGoogle Scholar
  59. 59.
    Fourman MM, Saber AA (2012) Robotic bariatric surgery: a systematic review. Surg Obes Relat Dis 8(4):483–488PubMedGoogle Scholar
  60. 60.
    Mühlmann G, Klaus A, Kirchmayr W et al (2003) da Vinci® robotic-assisted laparoscopic bariatric surgery: is it justified in a routine setting? Obes Surg 13(6):848–854PubMedGoogle Scholar
  61. 61.
    Hagen ME, Pugin F, Chassot G et al (2012) Reducing cost of surgery by avoiding complications: the model of robotic Roux-en-Y gastric bypass. Obes Surg 22(1):52–61PubMedGoogle Scholar
  62. 62.
    Meyer DM, Herbert MA, Sobhani NC et al (2009) Comparative clinical outcomes of thymectomy for myasthenia gravis performed by extended transsternal and minimally invasive approaches. Ann Thorac Surg 87(2):385–390PubMedGoogle Scholar
  63. 63.
    Toolabi K, Aminian A, Javid MJ et al (2009) Mid-term results of thoracoscopic thymectomy for myasthenia gravis. Neurol India 57(4):402–405PubMedGoogle Scholar
  64. 64.
    Wright GM, Barnett S, Clarke CP (2002) Video-assisted thoracoscopic thymectomy for myasthenia gravis. Intern Med J 32(8):367–371PubMedGoogle Scholar
  65. 65.
    Hartwich J, Tyagi S, Margaron F et al (2012) Robot-assisted thoracoscopic thymectomy for treating myasthenia gravis in children. J Laparoendosc Adv Surg Tech A 22(9):925–929PubMedGoogle Scholar
  66. 66.
    Skelly CL, Jackson CC, Wu Y et al (2003) Thoracoscopic thymectomy in children with myasthenia gravis. Am Surg 69(12):1087–1089PubMedGoogle Scholar
  67. 67.
    Rea F, Marulli G, Bortolotti L et al (2006) Experience with the “da Vinci” robotic system for thymectomy in patients with myasthenia gravis: report of 33 cases. Ann Thorac Surg 81(2):455–459PubMedGoogle Scholar
  68. 68.
    Marulli G, Rea F, Melfi F et al (2012) Robot-aided thoracoscopic thymectomy for early stage thymoma: a multicenter European study. J Thorac Cardiovasc Surg 144(5):1125–1130PubMedGoogle Scholar
  69. 69.
    Marulli G, Schiavon M, Perissinotto E et al (2003) Surgical and neurologic outcomes after robotic thymectomy in 100 consecutive patients with myasthenia gravis. J Thorac Cardiovasc Surg 145(3):730–735Google Scholar
  70. 70.
    Renaud S, Santelmo N, Renaud M et al (2013) Robotic-assisted thymectomy with da Vinci II versus sternotomy in the surgical treatment of non-thymomatous myasthenia gravis: early results. Rev Neurol (Paris) 169(1):30–36Google Scholar
  71. 71.
    Rückert JC, Ismail M, Swierzy M et al (2008) Thoracoscopic thymectomy with the da Vinci robotic system® for myasthenia gravis. Ann N Y Acad Sci 1132:329–335PubMedGoogle Scholar
  72. 72.
    Papiashvilli M, Sasson L, Azzam S et al (2013) Video-assisted thoracic surgery lobectomy versus lobectomy by thoracotomy for lung cancer: pilot study. Innovations (Phila) 8(1):6–11Google Scholar
  73. 73.
    Hanna WC, de Valence M, Atenafu EG et al (2013) Is video-assisted lobectomy for non-small lung cancer oncologically equivalent to open lobectomy? Eur J Cardiothorac Surg 43(6):1121–1125PubMedGoogle Scholar
  74. 74.
    Lee PC, Nasar A, Port JL et al (2013) Long-term survival after lobectomy for non-small cell lung cancer by video-assisted thoracic surgery versus thoracotomy. Ann Thorac Surg 96(3):951–961PubMedGoogle Scholar
  75. 75.
    Liang C, Wen H, Guo Y et al (2013) Severe intraoperative complications during VATS lobectomy compared with thoracotomy lobectomy for early stage non-small cell lung cancer. J Thorac Dis 5(4):513–517PubMedCentralPubMedGoogle Scholar
  76. 76.
    Marty-Ané CH, Canaud L, Solovei L et al (2013) Video-assisted thoracoscopic lobectomy: an unavoidable trend? A retrospective single-institution series of 410 cases. Interact Cardiovasc Thorac Surg 17(1):36–43PubMedGoogle Scholar
  77. 77.
    Li Z, Liu H, Li L (2012) Video-assisted thoracoscopic surgery versus lobectomy for stage I lung cancer: a meta-analysis of long-term outcomes. Exp Ther Med 3(5):886–892PubMedCentralPubMedGoogle Scholar
  78. 78.
    Zhang Z, Zhang Y, Feng H et al (2013) Is video-assisted thoracic surgery lobectomy better than thoracotomy for early-stage non-small-cell lung cancer? A systematic review and meta-analysis. Eur J Cardiothorac Surg 44(3):407–414PubMedGoogle Scholar
  79. 79.
    Paul S, Sedrakyan A, Chiu YL et al (2013) Outcomes after lobectomy using thoracoscopy vs thoracotomy: a comparative effectiveness analysis utilizing the Nationwide Inpatient Sample database. Eur J Cardiothorac Surg 43(4):813–817PubMedGoogle Scholar
  80. 80.
    Jett GK (2012) Thoracic robotics at the Heart Hospital Baylor Plano: the first 20 cases. Proc (Bayl Univ Med Cent) 25(4):324–326Google Scholar
  81. 81.
    Gharagozloo F, Margolis M, Tempesta B (2008) Robot-assisted thoracoscopic lobectomy for early-stage lung cancer. Ann Thorac Surg 85(6):1880–1885PubMedGoogle Scholar
  82. 82.
    Gharagozloo F, Margolis M, Tempesta B et al (2009) Robot-assisted lobectomy for early-stage lung cancer: report of 100 consecutive cases. Ann Thorac Surg 88(2):380–384PubMedGoogle Scholar
  83. 83.
    Park BJ, Flores RM, Rusch VW (2006) Robotic assistance for video-assisted thoracic surgical lobectomy: technique and initial results. J Thorac Cardiovasc Surg 131(1):54–59PubMedGoogle Scholar
  84. 84.
    Jang HJ, Lee HS, Park SY et al (2011) Comparison of the early robot-assisted lobectomy experience to video-assisted thoracic surgery lobectomy for lung cancer: a single-institution case series matching study. Innovations (Phila) 6(5):305–310Google Scholar
  85. 85.
    Augustin F, Bodner J, Maier H et al (2013) Robotic-assisted minimally invasive vs. thoracoscopic lung lobectomy: comparison of peri-operative results in a learning curve setting. Langenbecks Arch Surg 398(6):895–901PubMedGoogle Scholar
  86. 86.
    Flores RM, Alam N (2008) Video-assisted thoracic surgery lobectomy (VATS), open thoracotomy, and the robot for lung cancer. Ann Thorac Surg 85(2):S710–S715PubMedGoogle Scholar
  87. 87.
    Frumovitz M, dos Reis R, Sun CC et al (2007) Comparison of total laparoscopic and abdominal radical hysterectomy for patients with early-stage cervical cancer. Obstet Gynaecol 110(1):96–102Google Scholar
  88. 88.
    Li G, Yan X, Shang H et al (2007) A comparison of laparoscopic radical hysterectomy and pelvic lymphadenectomy and laparotomy in the treatment of Ib-IIa cervical cancer. Gynaecol Oncol 105(1):176–180Google Scholar
  89. 89.
    Kruijdenberg CB, van den Einden LC, Hendriks JC et al (2011) Robot-assisted versus total laparoscopic radical hysterectomy in early cervical cancer, a review. Gynaecol Oncol 120(3):334–339Google Scholar
  90. 90.
    Soto E, Lo Y, Friedman K et al (2011) Total laparoscopic hysterectomy versus da Vinci® robotic hysterectomy: is using the robot beneficial? J Gynaecol Oncol 22(4):253–259Google Scholar
  91. 91.
    Pasic RP, Rizzo JA, Fang H et al (2010) Comparing robot-assisted with conventional laparoscopic hysterectomy: impact on cost and clinical outcomes. J Minim Invasive Gynecol 17(6):730–738PubMedGoogle Scholar
  92. 92.
    Sarlos D, Kots LA (2011) Robotic versus laparoscopic hysterectomy: a review of recent comparative studies. Curr Opin Obstet Gynecol 23(4):283–288PubMedGoogle Scholar
  93. 93.
    Sarlos D, Kots L, Stevanovic N et al (2012) Robotic compared with conventional laparoscopic hysterectomy: a randomized controlled trial. Obstet Gynecol 120(3):604–611PubMedGoogle Scholar
  94. 94.
    Göçmen A, Sanlikan F, Uçar MG (2012) Robot-assisted hysterectomy vs total laparoscopic hysterectomy: a comparison of short-term surgical outcomes. Int J Med Robot 8(4):453–457PubMedGoogle Scholar
  95. 95.
    Hsiao KC, Latchamsetty K, Govier FE et al (2007) Comparison of laparoscopic and abdominal sacrocolpopexy for the treatment of vaginal vault prolapse. J Endourol 21(8):926–930PubMedGoogle Scholar
  96. 96.
    Seror J, Yates DR, Seringe E et al (2012) Prospective comparison of short-term outcomes obtained after pure laparoscopic and robot-assisted laparoscopic sacrocolpopexy. World J Urol 30(3):393–398PubMedGoogle Scholar
  97. 97.
    Judd JP, Siddiqui NY, Barnett JC et al (2010) Cost-minimization analysis of robot-assisted, laparoscopic, and abdominal sacrocolpopexy. J Minim Invasive Gynecol 17(4):493–499PubMedGoogle Scholar
  98. 98.
    Elliot CS, Hsieh MH, Sokol ER et al (2012) Robot-assisted versus open sacrocolpopexy: a cost-minimization analysis. J Urol 187(2):638–643Google Scholar
  99. 99.
    Hoyte L, Rabbanifard R, Mezzich J et al (2012) Cost analysis of open versus robot-assisted sacrocolpopexy. Female Pelvic Med Reconstr Surg 18(6):335–339PubMedGoogle Scholar
  100. 100.
    Makhoul B, De la Taille A, Vordos D et al (2004) Laparoscopic radical nephrectomy for T1 renal cancer: the gold standard? A comparison of laparoscopic vs open nephrectomy. BJU Int 93(1):67–70PubMedGoogle Scholar
  101. 101.
    Favaretto RL, Sanchez-Salas R, Benoist N et al (2013) Oncologic outcomes after laparoscopic partial nephrectomy: mid-term results. J Endourol 27(1):52–57PubMedGoogle Scholar
  102. 102.
    Favaretto RL, Shariat SF, Chade DC et al (2010) Comparison between laparoscopic and open radical nephroureterectomy in a contemporary group of patients: are recurrence and disease-specific survival associated with surgical technique? Eur Urol 58(5):645–651PubMedGoogle Scholar
  103. 103.
    Zheng JH, Zhang XL, Geng J et al (2013) Long-term oncologic outcomes of laparoscopic versus open partial nephrectomy. Chin Med J (Engl) 126(15):2938–2942Google Scholar
  104. 104.
    Hyams E, Pierorazio P, Mullins JK et al (2012) A comparative cost analysis of robot-assisted versus traditional laparoscopic partial nephrectomy. J Endourol 26(7):843–847PubMedGoogle Scholar
  105. 105.
    Panumatrassamee K, Autorino R, Laydner H et al (2013) Robotic versus laparoscopic partial nephrectomy for tumor in a solitary kidney: a single institution comparative analysis. Int J Urol 20(5):484–491PubMedGoogle Scholar
  106. 106.
    Lee S, Oh J, Hong SK et al (2011) Open versus robot-assisted partial nephrectomy: effect on clinical outcome. J Endourol 25(7):1181–1185PubMedGoogle Scholar
  107. 107.
    Alemozaffar M, Chang SL, Kacker R et al (2013) Comparing costs of robotic, laparoscopic, and open partial nephrectomy. J Endourol 27(5):560–565PubMedGoogle Scholar
  108. 108.
    Ferguson JE 3rd, Goyal RK, Raynor MC et al (2012) Cost analysis of robot-assisted laparoscopic versus hand-assisted laparoscopic partial nephrectomy. J Endourol 26(8):1030–1037PubMedGoogle Scholar
  109. 109.
    Boger M, Lucas SM, Popp SC et al (2010) Comparison of robot-assisted nephrectomy with laparoscopic and hand-assisted laparoscopic nephrectomy. JSLS 14(3):374–380PubMedCentralPubMedGoogle Scholar
  110. 110.
    Park JW, Choi KH, Yang SC et al (2012) Cost aspects of radical nephrectomy for the treatment of renal cell carcinoma in Korea: open, laparoscopic, robot-assisted laparoscopic and video-assisted minilaparotomy surgeries. Korean J Urol 53(8):519–523PubMedCentralPubMedGoogle Scholar
  111. 111.
    Guazonni G, Cestari A, Naspro R et al (2006) Intra- and peri-operative outcomes comparing radical retropubic and laparoscopic radical prostatectomy: results from a prospective, randomised, single-surgeon study. Eur Urol 50(1):98–104Google Scholar
  112. 112.
    Koutlidis N, Mourey E, Champigneulle J et al (2012) Robot-assisted or pure laparoscopic nerve-sparing radical prostatectomy: what is the optimal procedure for the surgical margins? A single center experience. Int J Urol 19(12):1076–1081PubMedGoogle Scholar
  113. 113.
    Coelho RF, Rocco B, Patel MB et al (2010) Retropubic, laparoscopic, and robot-assisted radical prostatectomy: a critical review of outcomes reported by high-volume centers. J Endourol 24(12):2003–2015PubMedCentralPubMedGoogle Scholar
  114. 114.
    Asimakopoulos AD, Pereira Fraga CT, Annino F et al (2011) Randomized comparison between laparoscopic and robot-assisted nerve-sparing radical prostatectomy. J Sex Med 8(5):1503–1512PubMedGoogle Scholar
  115. 115.
    Porpiglia F, Morra I, Lucci Chiarissi M et al (2013) Randomised controlled trial comparing laparoscopic and robot-assisted radical prostatectomy. Eur Urol 63(4):606–614PubMedGoogle Scholar
  116. 116.
    Lim SK, Kim KH, Shin TY et al (2013) Current status of robot-assisted laparoscopic radical prostatectomy: how does it compare with other surgical approaches? Int J Urol 20(3):271–284PubMedGoogle Scholar
  117. 117.
    Tewari A, Srivasatava A, Menon M (2003) A prospective comparison of radical retropubic and robot-assisted prostatectomy: experience in one institution. BJU Int 92(3):205–210PubMedGoogle Scholar
  118. 118.
    Minniti D, Chiadò Piat S, Di Novi C (2011) Robot-assisted versus radical prostatectomy: an evidence-based comparison. Technol Health Care 19(5):331–339PubMedGoogle Scholar
  119. 119.
    Willis DL, Gonzalgo ML, Brotzman M et al (2012) Comparison of outcomes between laparoscopic vs robot-assisted laparoscopic radical prostatectomy: a study of comparative effectiveness based upon validated quality of live outcomes. BJU Int 109(6):898–905PubMedGoogle Scholar
  120. 120.
    Laviana AA, Hu JC (2013) A comparison of the robot-assisted versus retropubic radical prostatectomy. Minerva Urol Nefrol 65(3):161–170PubMedGoogle Scholar
  121. 121.
    Close A, Robertson C, Rushton S et al (2013) Comparative cost-effectiveness of robot-assisted and standard laparoscopic prostatectomy as alternatives to open radical prostatectomy for treatment of men with localised prostate cancer: a health technology assessment from the perspective of the UK National Health Service. Eur Urol 64(3):361–369PubMedGoogle Scholar
  122. 122.
    Ramsey C, Pickard R, Robertson C et al (2012) Systematic review and economic modelling of the relative clinical benefit and cost-effectiveness of laparoscopic surgery and robotic surgery for removal of the prostate in men with localised prostate cancer. Health Technol Assess 16(41):1–313Google Scholar
  123. 123.
    Hyams ES, Mullins JK, Pierorazio PM et al (2013) Impact of robotic technique and surgical volume on the cost of radical prostatectomy. J Endourol 27(3):298–303PubMedGoogle Scholar
  124. 124.
    Barbash GI, Glied SA (2010) New technology and health care costs: the case of robot-assisted surgery. N Engl J Med 363(8):701–704PubMedGoogle Scholar
  125. 125.
    Delaney CP, Denagore AJ, Ponsky L (2010) Robot-assisted surgery and health care costs. N Engl J Med 363(22):2175 author reply 2176PubMedGoogle Scholar
  126. 126.
    Van Dierendonck JH (2013) Prostatectomie met joysticks. Med Oncologie 3:19–21Google Scholar
  127. 127.
    Ezekiel JE (2012) In medicine, falling for fake innovation. Column in The New York TimesGoogle Scholar
  128. 128.
    Levi M (2013) Exnovatie. Column in Medisch ContactGoogle Scholar
  129. 129.
    Böhm B, Rötting N, Schwenk W et al (2001) A prospective randomized trial on heart rate variability of the surgical team during laparoscopic and conventional sigmoid resection. Arch Surg 136(3):305–310PubMedGoogle Scholar
  130. 130.
    Arnetz BB, Andreasson S, Strandberg M et al (1988) Comparison between surgeons and general practitioners with respect to cardiovascular and psychosocial risk factors among physicians. Scan J Work Environ Health 14(2):118–124Google Scholar
  131. 131.
    Van der Schatte ORH, Van’t Hullenaar CD, Ruurda JP et al (2009) Ergonomics, user comfort, and performance in standard and robot-assisted laparoscopic surgery. Surg Endosc 23(6):1365–1371Google Scholar
  132. 132.
    Wolf JS Jr, Marcovich R, Gill IS et al (2000) Survey of neuromuscular injuries to the patient and surgeon during urologic laparoscopic surgery. Urology 55(6):831–836PubMedGoogle Scholar
  133. 133.
    Hubert N, Gilles M, Desbrosses K et al (2013) Ergonomic assessment of the surgeon’s physical workload during standard and robot assisted laparoscopic procedures. Int J Med Robot 9(2):142–147PubMedGoogle Scholar
  134. 134.
    Klein MI, Warm JS, Riley MA et al (2012) Mental workload and stress perceived by novice operators in the laparoscopic and robotic minimally invasive surgical interfaces. J Endourol 26(8):1089–1094PubMedGoogle Scholar
  135. 135.
    Heemskerk J, Zandbergen HR, Keet S et al. Relax! It’s just laparoscopy! Surgeon’s heart rhythm variability as a measure of mental strain during robot-assisted and conventional laparoscopic cholecystectomy. Submitted Google Scholar
  136. 136.
    Shukla PJ, Scherr DS, Milsom JW (2010) Robot-assisted surgery and health care costs. N Engl J Med 363(22):2174 author reply 2176PubMedGoogle Scholar
  137. 137.
    Awad MM, Fleshman JW (2010) Robot-assisted surgery and health care costs. N Engl J Med 363(22):2174–2175 author reply 2176PubMedGoogle Scholar
  138. 138.
    Ibrahim AM, Makary MA (2010) Robot-assisted surgery and health care costs. N Engl J Med 363(22):2175–2176 author reply 2176PubMedGoogle Scholar
  139. 139.
    La Chapelle CF, Jansen FW, Pelger RCM et al (2013) Robotchirurgie in Nederland. Hoogwaardig bewijs voor effectiviteit ontbreekt. Ned Tijdschr Geneeskd 157(28):A5145PubMedGoogle Scholar
  140. 140.
    Van der Sluis PC, Schreuder HW, Merks BT et al (2013) Centralisatie van robotchirurgie. Betere resultaten en besparing van kosten. Ned Tijdschr Geneeskd 157(28):A5228PubMedGoogle Scholar
  141. 141.
    Van der Poel HG, Beerlage HP, Klaver SO (2013) Robotchirurgie: pas op de plaats? Ned Tijdschr Geneeskd 157(28):A6365PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jeroen Heemskerk
    • 1
  • Nicole D. Bouvy
    • 2
  • Cor G. M. I. Baeten
    • 2
  1. 1.Department of General SurgeryLaurentius Hospital RoermondRoermondThe Netherlands
  2. 2.Maastricht University Medical CentreMaastrichtThe Netherlands

Personalised recommendations