Advertisement

Surgical Endoscopy

, Volume 28, Issue 2, pp 592–602 | Cite as

Effects of sleeve gastrectomy in high fat diet-induced obese mice: respective role of reduced caloric intake, white adipose tissue inflammation and changes in adipose tissue and ectopic fat depots

  • Anne-Sophie SchneckEmail author
  • Antonio Iannelli
  • Stéphanie Patouraux
  • Déborah Rousseau
  • Stéphanie Bonnafous
  • Beatrice Bailly-Maitre
  • Ophélia Le Thuc
  • Carole Rovere
  • Patricia Panaia-Ferrari
  • Rodolphe Anty
  • Albert Tran
  • Philippe Gual
  • Jean Gugenheim
Article

Abstract

Background

Sleeve gastrectomy (SG) has become a popular bariatric procedure. The mechanisms responsible for weight loss and improvement of metabolic disturbances have still not been completely elucidated. We investigated the effect of SG on body weight, adipose tissue depots, glucose tolerance, and liver steatosis independent of reduced caloric intake in high-fat-diet-induced obese mice.

Methods

C57BI/6 J mice fed a high fat diet (45 %) for 33 weeks were divided into three groups: sleeve gastrectomy (SG, 13 mice), sham-operated ad libitum fed (SALF, 13 mice) and sham-operated pair fed (PFS, 13 mice). The animals were humanely killed 23 days after surgery.

Results

In SG mice, food intake was reduced transiently, but weight loss was significant and persistent compared to controls (SG vs. PFS, P < 0.05; PFS vs. SALF, P < 0.05). SG mice showed improved glucose tolerance and lower levels of liver steatosis compared with controls (area under the curve, SG vs. PFS, P < 0.01; PFS vs. SALF, P < 0.05) (liver steatosis, SG vs. PFS, P < 0.05; PFS vs. SALF, P < 0.01). This was associated with a decrease in the ratios of the weight of pancreas, epididymal and inguinal adipose tissues to body weight, and an increase in the ratio of brown adipose tissue weight to body weight. Epididymal adipose tissue was also infiltrated by fewer activated T cells and by more anti-inflammatory regulatory T cells. Serum levels of fasting acyl ghrelin were still significantly decreased 3 weeks after surgery in SG mice compared to PFS mice (P < 0.05).

Conclusions

Reduced white adipose tissue inflammation, modification of adipose tissue development (brown vs. white adipose tissue), and ectopic fat are potential mechanisms that may account for the reduced caloric intake independent effects of SG.

Keywords

Bariatric surgery Glucose tolerance Morbid obesity Sleeve gastrectomy Weight loss 

Notes

Acknowledgments

This work was supported by grants from INSERM (France), the University of Nice, the Programme Hospitalier de Recherche Clinique (Centre Hospitalier Universitaire of Nice), and charities (Association Française pour l’Etude du Foie (AFEF)/Schering-Plough to PG, EFSD/Lilly European Diabetes Research Programme to PG and la Fondation pour la Recherche Médicale to Jean-Louis Nahon). We thank Dr. Jean-Louis Nahon for scientific discussions, Dr. M. C. Brahimi-Horn for editorial work, and the members of the INSERM U1065 animal facility.

Disclosures

Stéphanie Patouraux was supported by the Fondation pour la Recherche Médicale. Philippe Gual is a recipient of an Interface Grant from the Centre Hospitalier Universitaire of Nice. Anne-Sophie Schneck, Antonio Iannelli, Déborah Rousseau, Stéphanie Bonnafous, Beatrice Bailly-Maitre, Ophélia Le Thuc, Carole Rovere, Patricia Panaia-Ferrari, Rodolphe Anty, Albert Tran, and Jean Gugenheim have no conflicts of interest or financial ties to disclose.

References

  1. 1.
    Ren CJ, Patterson E, Gagner M (2000) Early results of laparoscopic biliopancreatic diversion with duodenal switch: a case series of 40 consecutive patients. Obes Surg 10:514–523PubMedCrossRefGoogle Scholar
  2. 2.
    Iannelli A, Dainese R, Piche T, Facchiano E, Gugenheim J (2008) Laparoscopic sleeve gastrectomy for morbid obesity. World J Gastroenterol 14:821–827PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Braghetto I, Csendes A, Lanzarini E, Papapietro K, Carcamo C, Molina JC (2012) Is laparoscopic sleeve gastrectomy an acceptable primary bariatric procedure in obese patients? Early and 5-year postoperative results. Surg Laparosc Endosc Percutan Tech 22:479–486PubMedCrossRefGoogle Scholar
  4. 4.
    Basso N, Capoccia D, Rizzello M, Abbatini F, Mariani P, Maglio C, Coccia F, Borgonuovo G, De Luca ML, Asprino R, Alessandri G, Casella G, Leonetti F (2011) First-phase insulin secretion, insulin sensitivity, ghrelin, GLP-1, and PYY changes 72 h after sleeve gastrectomy in obese diabetic patients: the gastric hypothesis. Surg Endosc 25:3540–3550PubMedCrossRefGoogle Scholar
  5. 5.
    Peterli R, Wölnerhanssen B, Peters T, Devaux N, Kern B, Christoffel-Courtin C, Drewe J, von Flüe M, Beglinger C (2009) Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial. Ann Surg 250:234–241PubMedCrossRefGoogle Scholar
  6. 6.
    Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP, Pothier CE, Thomas S, Abood B, Nissen SE, Bhatt DL (2012) Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med 366:1567–1576PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Peterli R, Steinert RE, Woelnerhanssen B, Peters T, Christoffel-Courtin C, Gass M, Kern B, von Fluee M, Beglinger C (2012) Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes Surg 22:740–748PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Iannelli A, Anty R, Schneck AS, Tran A, Gugenheim J (2011) Inflammation, insulin resistance, lipid disturbances, anthropometrics, and metabolic syndrome in morbidly obese patients: a case control study comparing laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy. Surgery 149:364–370PubMedCrossRefGoogle Scholar
  9. 9.
    Yin DP, Gao Q, Ma LL, Yan W, Williams PE, McGuinness OP, Wasserman DH, Abumrad NN (2011) Assessment of different bariatric surgeries in the treatment of obesity and insulin resistance in mice. Ann Surg 254:73–82PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Schlager A, Khalaileh A, Mintz Y, Abu Gazala M, Globerman A, Ilani N, Rivkind AI, Salpeter S, Dor Y, Zamir G (2011) A mouse model for sleeve gastrectomy: applications for diabetes research. Microsurgery 31:66–71PubMedCrossRefGoogle Scholar
  11. 11.
    Bertola A, Deveaux V, Bonnafous S, Rousseau D, Anty R, Wakkach A, Dahman M, Tordjman J, Clément K, McQuaid SE, Frayn KN, Huet PM, Gugenheim J, Lotersztajn S, Le Marchand-Brustel Y, Tran A, Gual P (2009) Elevated expression of osteopontin may be related to adipose tissue macrophage accumulation and liver steatosis in morbid obesity. Diabetes 58:125–133PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, Otsu M, Hara K, Ueki K, Sugiura S, Yoshimura K, Kadowaki NagaiR (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15:914–920PubMedCrossRefGoogle Scholar
  13. 13.
    Winer S, Chan Y, Paltser G, Truong D, Tzui H, Bahrami J, Dorfman R, Wang Y, Zielenski J, Mastronardi F, Maezawa Y, Drucker DJ, Engleman E, Winer D, Dosch HM (2009) Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med 15:921–929PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, Lee J, Goldfine AB, Benoist C, Shoelson S, Mathis D (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15:930–939PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Stefater MA, Pérez-Tilve D, Chambers AP, Wilson-Perez HE, Sandoval DA, Berger J, Toure M, Tschöp M, Woods SC, Seeley RJ (2010) Sleeve gastrectomy induces loss of weight and fat mass in obese rats, but does not affect leptin sensitivity. Gastroenterology 138:2426–2436PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Spiegelman BM, Flier JS (2001) Obesity and the regulation of energy balance. Cell 104:531–543PubMedCrossRefGoogle Scholar
  17. 17.
    Schwartz MW, Porte D Jr (2005) Diabetes, obesity, and the brain. Science 307:375–379PubMedCrossRefGoogle Scholar
  18. 18.
    Zengin A, Nguyen AD, Wong IP, Zhang L, Enriquez RF, Eisman JA, Herzog H, Baldock PA, Sainsbury A (2013) Neuropeptide Y mediates the short-term hypometabolic effect of estrogen deficiency in mice. Int J Obes (Lond) 37:390–398CrossRefGoogle Scholar
  19. 19.
    Bueter M, Löwenstein C, Olbers T, Wang M, Cluny NL, Bloom SR, Sharkey KA, Lutz TA, le Roux CW (2010) Gastric bypass increases energy expenditure in rats. Gastroenterology 138:1845–1853PubMedCrossRefGoogle Scholar
  20. 20.
    Borg CM, Le Roux CW, Ghatei MA, Bloom SR, Patel AG, Aylwin SJ (2006) Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg 93:210–215PubMedCrossRefGoogle Scholar
  21. 21.
    Enerbäck S (2010) Brown adipose tissue in humans. Int J Obes (Lond) 34(Suppl 1):S43–S46CrossRefGoogle Scholar
  22. 22.
    Hajer GR, Van Haeften TW, Visseren FLJ (2008) Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 29:2959–2971PubMedCrossRefGoogle Scholar
  23. 23.
    Iannelli A, Schneck AS, Gugenheim J (2011) Comment on: serial changes in inflammatory biomarkers after Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis 7:625–627PubMedCrossRefGoogle Scholar
  24. 24.
    Rotter V, Nagaev I, Smith U (2003) Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem 278:45777–45784PubMedCrossRefGoogle Scholar
  25. 25.
    Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336PubMedCrossRefGoogle Scholar
  26. 26.
    Tran A, Gual P (2013) Non-alcoholic steatohepatitis in morbidly obese patients. Clin Res Hepatol Gastroenterol 37:17–29PubMedCrossRefGoogle Scholar
  27. 27.
    Dalmas E, Rouault C, Abdennour M, Rovere C, Rizkalla S, Bar-Hen A, Nahon JL, Bouillot JL, Guerre-Millo M, Clément K, Poitou C (2011) Variations in circulating inflammatory factors are related to changes in calorie and carbohydrate intakes early in the course of surgery-induced weight reduction. Am J Clin Nutr 94:450–458PubMedCrossRefGoogle Scholar
  28. 28.
    Anty R, Dahman M, Iannelli A, Gual P, Staccini-Myx A, Amor IB, Luciani N, Saint-Paul MC, Huet PM, Sadoul JL, Srai SK, Unwin R, Gugenheim J, Le Marchand-Brustel Y, Tran A, Bekri S (2008) Bariatric surgery can correct iron depletion in morbidly obese women: a link with chronic inflammation. Obes Surg 18:709–714PubMedCrossRefGoogle Scholar
  29. 29.
    Iannelli A, Anty R, Piche T, Dahman M, Gual P, Tran A, Gugenheim J (2009) Impact of laparoscopic Roux-en-Y gastric bypass on metabolic syndrome, inflammation, and insulin resistance in super versus morbidly obese women. Obes Surg 19:577–582PubMedCrossRefGoogle Scholar
  30. 30.
    Longo KA, Govek EK, Nolan A, McDonagh T, Charoenthongtrakul S, Giuliana DJ, Morgan K, Hixon J, Zhou C, Kelder B, Kopchick JJ, Saunders JO, Navia MA, Curtis R, DiStefano PS, Geddes BJ (2011) Pharmacologic inhibition of ghrelin receptor signaling is insulin sparing and promotes insulin sensitivity. J Pharmacol Exp Ther 339:115–124PubMedCrossRefGoogle Scholar
  31. 31.
    Chambers AP, Kirchner H, Wilson-Perez HE, Willency JA, Hale JE, Gaylinn BD, Thorner MO, Pfluger PT, Gutierrez JA, Tschöp MH, Sandoval DA, Seeley RJ (2013) The effects of vertical sleeve gastrectomy in rodents are ghrelin independent. Gastroenterology 144:50–52PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Igoillo-Esteve M, Marselli L, Cunha DA, Ladrière L, Ortis F, Grieco FA, Dotta F, Weir GC, Marchetti P, Eizirik DL, Cnop M (2010) Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by beta cells in type 2 diabetes. Diabetologia 53:1395–1405PubMedCrossRefGoogle Scholar
  33. 33.
    Cnop M (2008) Fatty acids and glucolipotoxicity in the pathogenesis of type 2 diabetes. Biochem Soc Trans 36:348–352PubMedCrossRefGoogle Scholar
  34. 34.
    Noushmehr H, D’Amico E, Farilla L, Hui H, Wawrowsky KA, Mlynarski W, Doria A, Abumrad NA, Perfetti R (2005) Fatty acid translocase (FAT/CD36) is localized on insulin-containing granules in human pancreatic beta-cells and mediates fatty acid effects on insulin secretion. Diabetes 54:472–481PubMedCrossRefGoogle Scholar
  35. 35.
    Tushuizen ME, Bunck MC, Pouwels PJ, Bontemps S, van Waesberghe JH, Schindhelm RK, Mari A, Heine RJ, Diamant M (2007) Pancreatic fat content and beta-cell function in men with and without type 2 diabetes. Diabetes Care 30:2916–2921PubMedCrossRefGoogle Scholar
  36. 36.
    Lee Y, Hirose H, Ohneda M, Johnson JH, McGarry JD, Unger RH (1994) Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte–beta-cell relationships. Proc Natl Acad Sci USA 91:10878–10882PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Lee Y, Lingvay I, Szczepaniak LS, Ravazzola M, Orci L, Unger RH (2010) Pancreatic steatosis: harbinger of type 2 diabetes in obese rodents. Int J Obes (Lond) 34:396–400CrossRefGoogle Scholar
  38. 38.
    Pinnick KE, Collins SC, Londos C, Gauquier D, Clark A, Fielding BA (2008) Pancreatic ectopic fat is characterized by adipocyte infiltration and altered lipid composition. Obesity (Silver Spring) 16:522–530CrossRefGoogle Scholar
  39. 39.
    Rodríguez A, Becerril S, Valentí V, Moncada R, Mendez-Gimenez M, Ramirez B, Lancha A, Marin M, Burrell MA, Catalan V, Gomez-Ambrosi J, Frühbeck G (2012) Short-term effects of sleeve gastrectomy and caloric restriction on blood pressure in diet-induced obese rats. Obes Surg 22:1481–1490PubMedCrossRefGoogle Scholar
  40. 40.
    Cummings BP, Bettaieb A, Graham JL, Stanhope KL, Kowala M, Hai FG, Chouinard ML, Havel PJ (2012) Vertical sleeve gastrectomy improves glucose and lipid metabolism and delays diabetes onset in UCD-T2DM rats. Endocrinology 153:3620–3632PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Anne-Sophie Schneck
    • 1
    • 2
    • 3
    Email author
  • Antonio Iannelli
    • 1
    • 2
    • 3
  • Stéphanie Patouraux
    • 2
    • 3
    • 4
  • Déborah Rousseau
    • 2
    • 3
  • Stéphanie Bonnafous
    • 2
    • 3
  • Beatrice Bailly-Maitre
    • 2
    • 3
  • Ophélia Le Thuc
    • 2
    • 5
  • Carole Rovere
    • 2
    • 5
  • Patricia Panaia-Ferrari
    • 4
  • Rodolphe Anty
    • 1
    • 2
    • 3
  • Albert Tran
    • 1
    • 2
    • 3
  • Philippe Gual
    • 1
    • 2
    • 3
  • Jean Gugenheim
    • 1
    • 2
    • 3
  1. 1.Centre Hospitalier Universitaire de NiceHôpital de l’Archet, Pôle DigestifNiceFrance
  2. 2.Faculté de MédecineUniversité de Nice Sophia AntipolisNiceFrance
  3. 3.Equipe 8 « Complications hépatiques de l’obésité»INSERM, U1065NiceFrance
  4. 4.Département de Biologie, Centre Hospitalier Universitaire de NiceHôpital de l’ArchetNiceFrance
  5. 5.Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097Centre National de la Recherche Scientifique (CNRS)ValbonneFrance

Personalised recommendations