Surgical Endoscopy

, 25:3540 | Cite as

First-phase insulin secretion, insulin sensitivity, ghrelin, GLP-1, and PYY changes 72 h after sleeve gastrectomy in obese diabetic patients: the gastric hypothesis

  • N. BassoEmail author
  • D. Capoccia
  • M. Rizzello
  • F. Abbatini
  • P. Mariani
  • C. Maglio
  • F. Coccia
  • G. Borgonuovo
  • M. L. De Luca
  • R. Asprino
  • G. Alessandri
  • G. Casella
  • F. Leonetti



The aim of this study was to evaluate the possible role of sleeve gastrectomy (SG) per se in the reversibility of diabetes.


Insulin secretion and peripheral insulin sensitivity using the intravenous glucose tolerance test (IVGTT) were assessed in 18 obese type 2 diabetic patients and in 10 nondiabetic obese patients before and 3 days after SG, before any food intake and any weight change occurrence. At the same time, ghrelin, GLP-1, and PYY levels were determined.


In diabetic patients who had the disease less than 10.5 years, the first phase of insulin secretion promptly improved after SG. The early insulin area under the curve (AUC) significantly increased at the postoperative IVGTT, indicating an increased glucose-induced insulin secretion. The second phase of insulin secretion (late AUC) significantly decreased after SG in all groups, indicating an improved insulin peripheral sensitivity. In all groups, pre- and postoperatively, intravenous glucose stimulation determined a decrease in ghrelin values and an increase in GLP-1 and PYY values. However, in the group of patients with disease duration >10.5 years, the differences were not significant except for the late insulin AUC. Postoperative basal and intravenous glucose-stimulated ghrelin levels were lower than preoperative levels in all groups of patients. Basal and intravenous stimulated GLP-1 and PYY postoperative values were higher than preoperative levels in all groups.


Restoration of the first phase of insulin secretion and improved insulin sensitivity in diabetic obese patients immediately after SG, before any food passage through the gastrointestinal tract and before any weight loss, seem to be related to ghrelin, GLP-1, and PYY hormonal changes of possible gastric origin and was neither meal- nor weight-change-related. Duration of the disease up to 10.5 years seems to be a major cut off in the pathophysiological changes induced by SG. A “gastric” hypothesis may be put forward to explain the antidiabetes effect of SG.


Type 2 diabetes Sleeve gastrectomy Glucose metabolism Metabolic surgery 



N. Basso, D. Capoccia, P. Mariani, M. Rizzello, C. Maglio, F. Coccia, G. Borgonuovo, M. L. De Luca, F. Abbatini, R. Asprino, G. Alessandri, G. Casella, and F. Leonetti have no conflicts of interest or financial ties to disclose.


  1. 1.
    Sjöström CD, Lissner L, Wedel H, Sjöström L (1999) Reduction in incidence of diabetes, hypertension and lipid disturbances after intentional weight loss induced by bariatric surgery: the SOS intervention study. Obes Res 7(5):477–485PubMedGoogle Scholar
  2. 2.
    Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD, Pories WJ, Bantle JP, Sledge I (2009) Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med 122(3):205–206CrossRefGoogle Scholar
  3. 3.
    Cottam D, Qureshi FG, Mattar SG, Sharma S, Holover S, Bonanomi G, Ramanathan R, Schauer P (2006) Laparoscopic sleeve gastrectomy as an initial weight-loss procedure for high-risk patients with morbid obesity. Surg Endosc 20(6):859–863PubMedCrossRefGoogle Scholar
  4. 4.
    Moon Han S, Kim WW, Oh JH (2005) Results of laparoscopic sleeve gastrectomy (LSG) at 1 year in morbidly obese Korean patients. Obes Surg 15(10):1469–1475PubMedCrossRefGoogle Scholar
  5. 5.
    Gagner M, Detail M, Kalberer TL, Erickson AL, Crosby RD (2009) The second international consensus summit for sleeve gastrectomy. Surg Obes Relat Dis 5(4):476–487PubMedCrossRefGoogle Scholar
  6. 6.
    Vidal J, Ibarzabal A, Romero F, Delgado S, Momblán D, Flores L, Lacy A (2008) Type 2 diabetes mellitus and the metabolic syndrome following sleeve gastrectomy in severely obese subjects. Obes Surg 18(9):1077–1082PubMedCrossRefGoogle Scholar
  7. 7.
    Abbatini F, Rizzello M, Casella G, Alessandri G, Capoccia D, Leonetti F, Basso N (2010) Long-term effects of laparoscopic sleeve gastrectomy, gastric bypass, and adjustable gastric banding on type 2 diabetes. Surg Endosc 24(5):1005–1010PubMedCrossRefGoogle Scholar
  8. 8.
    Rizzello M, Abbatini F, Casella G, Alessandri G, Fantini A, Leonetti F, Basso N (2010) Early postoperative insulin-resistance changes after sleeve gastrectomy. Obes Surg 20(1):50–55PubMedCrossRefGoogle Scholar
  9. 9.
    Salinari S, Bertuzzi A, Asnaghi S, Guidone C, Manco M, Mingrone G (2009) First-phase insulin secretion restoration and differential response to glucose load depending on the route of administration in type 2 diabetic subjects after bariatric surgery. Diabetes Care 32(3):375–380PubMedCrossRefGoogle Scholar
  10. 10.
    Peterli R, Wölnerhanssen B, Peters T, Devaux N, Kern B, Christoffel-Courtin C, Drewe J, von Flüe M, Beglinger C (2009) Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial. Ann Surg 250(2):234–241PubMedCrossRefGoogle Scholar
  11. 11.
    Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, Marks JS (2001) Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 289(1):76–79CrossRefGoogle Scholar
  12. 12.
    Hainer V, Toplak H, Mitrakou A (2008) Treatment modalities of obesity: what fits whom? Diabetes Care 31 Suppl 2:S269–S277PubMedCrossRefGoogle Scholar
  13. 13.
    Rosenthal R, Li X, Samuel S, Martinez P, Zheng C (2008) Effect of sleeve gastrectomy on patients with diabetes mellitus. Surg Obes Relat Dis 5(4):429–434PubMedCrossRefGoogle Scholar
  14. 14.
    Schulman AP, Del Genio F, Sinha N, Rubino F (2009) “Metabolic” surgery for the treatment of type 2 diabetes. Endocr Pract 15(6):624–631PubMedCrossRefGoogle Scholar
  15. 15.
    Ferrannini E, Mingrone G (2009) Impact of different bariatric surgical procedures on insulin action and beta-cell function in type 2 diabetes. Diabetes Care 32(3):514–520PubMedCrossRefGoogle Scholar
  16. 16.
    Rubino F, Forgione A, Cummings DE, Vix M, Gnuli D, Mingrone G, Castagneto M, Marescaux J (2006) The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg 244(5):741–749PubMedCrossRefGoogle Scholar
  17. 17.
    Pories WJ, Albrecht RJ (2001) Etiology of type II diabetes mellitus: role of the foregut. World J Surg 25:527–531PubMedCrossRefGoogle Scholar
  18. 18.
    Hickey MS, Pories WJ, MacDonald KG Jr, Cory KA, Dohm GL, Swanson MS, Israel RG, Barakat HA, Considine RV, Caro JF, Houmard JA (1998) A new paradigm for type 2 diabetes mellitus: could it be a disease of the foregut? Ann Surg 227(5):637–643 discussion 643-644PubMedCrossRefGoogle Scholar
  19. 19.
    Guidone C, Manco M, Valera-Mora E, Iaconelli A, Gniuli D, Mari A, Nanni G, Castagneto M, Calvani M, Mingrone G (2006) Mechanisms of recovery from type 2 diabetes after malabsorptive bariatric surgery. Diabetes 55(7):2025–2031PubMedCrossRefGoogle Scholar
  20. 20.
    Briatore L, Salani B, Andraghetti G, Danovaro C, Sferrazzo E, Scopinaro N, Adami GF, Maggi D, Cordera R (2008) Restoration of acute insulin response in T2DM subjects 1 month after biliopancreatic diversion. Obesity 16(1):77–81PubMedCrossRefGoogle Scholar
  21. 21.
    Rubino F (2008) Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. Diabetes Care 31 Suppl 2:S290–S296PubMedCrossRefGoogle Scholar
  22. 22.
    Bruce DG, Chisholm DJ, Storlien LH, Kraegen EW (1988) Physiological importance of deficiency in early prandial insulin secretion in non-insulin-dependent diabetes. Diabetes 37(6):736–744PubMedCrossRefGoogle Scholar
  23. 23.
    Laville M, Disse E (2009) Bariatric surgery for diabetes treatment: why should we go rapidly to surgery. Diabetes Metab 35(6 Pt 2):562–563PubMedCrossRefGoogle Scholar
  24. 24.
    Kubosaki A, Nakamura S, Notkins AL (2005) Dense core vesicle proteins IA-2 and IA-2beta: metabolic alterations in double knockout mice. Diabetes 54 Suppl 2:S46–S51PubMedCrossRefGoogle Scholar
  25. 25.
    Henquin JC, Nenquin M, Szollosi A, Kubosaki A, Notkins AL (2008) Insulin secretion in islets from mice with a double knockout for the dense core vesicle proteins islet antigen-2 (IA-2) and IA-2beta. Endocrinology 196(3):573–581CrossRefGoogle Scholar
  26. 26.
    Leonetti F, Silecchia G, Iacobellis G, Ribaudo MC, Zappaterreno A, Tiberti C, Iannucci CV, Perrotta N, Bacci V, Basso MS, Basso N, Di Mario U (2003) Different plasma gherlin levels after laparoscopic gastric by-pass and adjustable gastric banding in morbid obese subjects. J Clin Endocrinol Metab 88(9):4227–4231PubMedCrossRefGoogle Scholar
  27. 27.
    Leonetti F, Iacobellis G, Ribaudo MC, Zappaterreno A, Tiberti C, Iannucci CV, Vecci E, Di Mario U (2004) Acute insulin infusion decreases plasma ghrelin levels in uncomplicated obesity. Regul Pept 122(3):179–183PubMedCrossRefGoogle Scholar
  28. 28.
    Dezaki K, Sone H, Yada T (2008) Ghrelin is a physiological regulator of insulin release in pancreatic islets and glucose homeostasis. Pharmacol Ther 118(2):239–249PubMedCrossRefGoogle Scholar
  29. 29.
    Karamanakos SN, Vagenas K, Kalfarentzos F, Alexandrides TK (2008) Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann Surg 247(3):401–407PubMedCrossRefGoogle Scholar
  30. 30.
    Vestergaard ET, Djurhuus CB, Gjedsted J, Nielsen S, Møller N, Holst JJ, Jørgensen JO, Schmitz O (2008) Acute effects of ghrelin administration on glucose and lipid metabolism. J Clin Endocrinol Metab 93(2):438–444PubMedCrossRefGoogle Scholar
  31. 31.
    van den Hoek AM, Heijboer AC, Voshol PJ, Havekes LM, Romijn JA, Corssmit EP, Pijl H (2007) Chronic PYY3–36 treatment promotes fat oxidation and ameliorates insulin resistance in C57BL6 mice. Am J Physiol Endocrinol Metab 292:E238–E245PubMedCrossRefGoogle Scholar
  32. 32.
    Meier JJ, Gallwitz B, Salmen S, Goetze O, Holst JJ, Schmidt WE, Nauck MA (2003) Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with type 2 diabetes. J Clin Endocrinol Metab 88:2719–2725PubMedCrossRefGoogle Scholar
  33. 33.
    Kindel TL, Yoder SM, Seeley RJ, D’Alessio DA, Tso P (2009) Duodenal-jejunal exclusion improves glucose tolerance in the diabetic, Goto-Kakizaki rat by a GLP-1 receptor-mediated mechanism. J Gastrointest Surg 13(10):1762–1772PubMedCrossRefGoogle Scholar
  34. 34.
    Konturek SJ, Pepera J, Zabielski K, Konturek PC, Pawlik T, Szlachcic A, Hahn EG (2003) Brain-gut axis in pancreatic secretion and appetite control. J Physiol Pharmacol 54(3):293–317PubMedGoogle Scholar
  35. 35.
    Perez-Tilve D, Nogueiras R, Mallo F, Benoit SC, Tschoep M (2006) Gut hormones ghrelin, PYY, and GLP-1 in the regulation of energy balance [corrected] and metabolism. Endocrine 29(1):61PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • N. Basso
    • 1
    Email author
  • D. Capoccia
    • 2
  • M. Rizzello
    • 1
  • F. Abbatini
    • 1
  • P. Mariani
    • 1
  • C. Maglio
    • 2
  • F. Coccia
    • 2
  • G. Borgonuovo
    • 2
  • M. L. De Luca
    • 2
  • R. Asprino
    • 2
  • G. Alessandri
    • 1
  • G. Casella
    • 1
  • F. Leonetti
    • 2
  1. 1.Surgical-Medical Center for Digestive Diseases, Policlinico “Umberto I”University of Rome “Sapienza”RomeItaly
  2. 2.Department of Clinical Sciences, Policlinico “Umberto I”University of Rome “Sapienza”RomeItaly

Personalised recommendations