Surgical Endoscopy

, Volume 25, Issue 10, pp 3453–3458

Miniature in vivo robot for laparoendoscopic single-site surgery

  • Oleg Dolghi
  • Kyle W. Strabala
  • Tyler D. Wortman
  • Matthew R. Goede
  • Shane M. Farritor
  • Dmitry Oleynikov
New Technology



The aim of this study was to develop a multidexterous robot capable of generating the required forces and speeds to perform surgical tasks intra-abdominally. Current laparoscopic surgical robots are expensive, bulky, and fundamentally constrained by a small entry incision. A new approach to minimally invasive surgery places the robot completely within the patient. Miniature in vivo robots may allow surgeons to overcome current laparoscopic constraints such as dexterity, orientation, and visualization.


A collaborative research group from the Department of Surgery at the University of Nebraska Medical Center and the College of Engineering at the University of Nebraska-Lincoln designed and built a surgical robot prototype capable of performing specific surgical tasks within the peritoneal cavity.


The basic robotic design consists of two arms each connected to a central body. Each arm has three degrees of freedom and rotational shoulder and elbow joints. This combination allows a surgeon to grasp, manipulate, cauterize, and perform intracorporeal suturing. The robot’s workspace is a hollow hemisphere with an inner radius of 75 mm and an outer radius of 205 mm. Its versatility was demonstrated in four procedures performed in a porcine model: cholecystectomy, partial colectomy, abdominal exploration, and intracorporeal suturing.


Miniature in vivo robots have the potential to address the limitations of using articulated instrumentation to perform advanced laparoscopic surgical procedures. Once inserted into the peritoneal cavity, the robot provides a stable platform for visualization with sufficient dexterity and speed to perform surgical tasks from multiple orientations and workspaces.


Laparoendoscopic single-site surgery LESS Robotic surgery Minimally invasive surgery Miniature robot 


  1. 1.
    Leggett PL, Churchman-Winn R, Miller G (2000) Minimizing ports to improve laparoscopic cholecystectomy. Surg Endosc 14:32–36PubMedCrossRefGoogle Scholar
  2. 2.
    Faraz A, Payandeh S (2000) Engineering approaches to mechanical and robotic design for minimally invasive surgery (MIS). Kluwer Academic Publishers, Boston, MA, pp 1–11Google Scholar
  3. 3.
    Liem MS, van der Graaf Y, van Steensel CJ, Boelhouwer RU, Clevers GJ, Meijer WS, Stassen LP, Vente JP, Weidema WF, Schrijvers AJ, van Vroonhoven TJ (1997) Comparison of conventional anterior surgery and laparoscopic surgery for inguinal-hernia repair. N Engl J Med 336(22):1541–1547PubMedCrossRefGoogle Scholar
  4. 4.
    Ruurda JP, Broeders IA, Simmermacher RP, Borel Rinkes IH, Van Vroonhoven TJ (2002) Feasibility of robot-assisted laparoscopic surgery: and evaluation of 35 robotic-assisted cholecystectomies. Surg Laparosc Percutan Tech 12(1):41–45CrossRefGoogle Scholar
  5. 5.
    Stiff G, Rhodes M, Kelly A, Telford K, Armstrong CP, Rees BI (1994) Long-term pain: less common after laparoscopic than open cholecystectomy. Br J Surg 81:1368–1370PubMedCrossRefGoogle Scholar
  6. 6.
    Tacchino R, Greco F, Matera D (2009) Single-incision laparoscopic cholecystectomy: surgery without a visible scar. Surg Endosc 23:896–899PubMedCrossRefGoogle Scholar
  7. 7.
    Zornig C, Mofid H, Emmermann A, Alm M, von Waldenfels HA, Felixmuller C (2008) Scarless cholecystectomy with combined transvaginal and transumbilical approach in a series of 20 patients. Surg Endosc 22:1427–1429PubMedCrossRefGoogle Scholar
  8. 8.
    Kaouk JH, Goel RK, Haber G, Crouzet S, Stein RJ (2009) Robotic single-port transumbilical surgery in humans: initial report. BJU Int 103:366–369PubMedCrossRefGoogle Scholar
  9. 9.
    Tracy CR, Raman JD, Cadeddu JA, Rane A (2008) Laparoendoscopic single-site surgery in urology: where have we been and where are we heading? Nat Clin Pract Urol 5(10):561–568PubMedCrossRefGoogle Scholar
  10. 10.
    Rattner D, Kalloo A, The SAGES/ASGE Working Group on Natural Orifice Translumenal Endoscopic Surgery (2005) ASGE/SAGES working group on natural orifice translumenal endoscopic surgery white paper. Gastrointest Endosc 62:199–203CrossRefGoogle Scholar
  11. 11.
    Ko CW, Kalloo AN (2006) Per-oral transgastric abdominal surgery. Chin J Dig Dis 7:67–70PubMedCrossRefGoogle Scholar
  12. 12.
    Kommu SS, Rane A (2009) Devices for laparoendoscopic single-site surgery in urology. Expert Rev Med Devices 6:95–103PubMedCrossRefGoogle Scholar
  13. 13.
    Ballantyne GH (2002) Robotic surgery, telerobotic surgery, telepresence, and telementoring. Surg Endosc 16:1389–1402PubMedCrossRefGoogle Scholar
  14. 14.
    Corcione F, Esposito C, Cuccurullo D, Settembre A, Miranda N, Amato F, Pirozzi F, Caiazzo P (2005) Advantages and limits of robot-assisted laparoscopic surgery. Surg Endosc 19:117–119PubMedCrossRefGoogle Scholar
  15. 15.
    Moorthy K, Munz Y, Dosis A, Hernandez J, Martin S, Bello F, Rockall T, Darzi A (2004) Dexterity enhancement with robotic surgery. Surg Endosc 18:790–795PubMedGoogle Scholar
  16. 16.
    Rentschler M, Dumpert J, Platt S, Iagnemma K, Oleynikov D, Farritor S (2007) An in vivo mobile robot for surgical vision and task assistance. ASME J Med Devices 1(1):23–29CrossRefGoogle Scholar
  17. 17.
    Platt SR, Hawks JA, Rentschler ME (2009) Vision and task assistance using modular wireless in vivo surgical robots. IEEE Trans Biomed Eng 56(6):1700–1710PubMedCrossRefGoogle Scholar
  18. 18.
    Lehman AC, Berg KA, Dumpert J, Wood NA, Visty AQ, Rentschler ME, Platt SR, Farritor SM, Oleynikov D (2008) Surgery with cooperative robots. Comput Aided Surg 13:95–105PubMedGoogle Scholar
  19. 19.
    Lehman AC, Dumpert J, Wood NA, Redden L, Visty AQ, Farritor S, Oleynikov D (2009) Natural orifice cholecystectomy using a miniature robot. Surg Endosc 23:260–266PubMedCrossRefGoogle Scholar
  20. 20.
    Lehman AC, Tiwari MM, Shah BC, Farritor SM, Nelson C, Oleynikov D (2010) Recent advances in robotic manipulators and miniature in vivo robotics for minimally invasive surgery. J Mech Eng Sci 224(7):1487–1494Google Scholar
  21. 21.
    Lehman AC, Dumpert J, Wood NA, Visty AQ, Farritor SM, Varnell B, Oleynikov D (2009) Natural Orifice Translumenal Endoscopic Surgery with a miniature in vivo surgical robot. Surg Endosc 23(7):1649PubMedCrossRefGoogle Scholar
  22. 22.
    Shah B, Buettner S, Lehman A, Farritor S, Oleynikov D (2009) Miniature in vivo robotics and novel robotic surgical platforms. Urol Clin North Am 36(2):251–263PubMedCrossRefGoogle Scholar
  23. 23.
    Canes D, Lehman A, Farritor S, Oleynikov D, Desai M (2009) The future of NOTES instrumentation: flexible robotics and in vivo minirobots. J Endourol 23(5):787–792PubMedCrossRefGoogle Scholar
  24. 24.
    Lehman A, Dumpert J, Wood N, Redden L, Visty A, Varnell B, Oleynikov D (2009) Natural orifice cholecystectomy using a miniature robot. Surg Endosc 23(2):260–266PubMedCrossRefGoogle Scholar
  25. 25.
    Oleynikov D (2008) Robotic surgery. Surg Clin North Am 88(5):1121–1130PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Oleg Dolghi
    • 2
  • Kyle W. Strabala
    • 1
  • Tyler D. Wortman
    • 1
  • Matthew R. Goede
    • 2
  • Shane M. Farritor
    • 1
  • Dmitry Oleynikov
    • 2
  1. 1.College of EngineeringUniversity of Nebraska-Lincoln, Walter Scott Engineering CenterLincolnUSA
  2. 2.Department of SurgeryUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations