Surgical Endoscopy

, Volume 25, Issue 3, pp 681–690 | Cite as

Surgery in space: the future of robotic telesurgery

  • Tamás Haidegger
  • József Sándor
  • Zoltán Benyó
Review

Abstract

Background

The origins of telemedicine date back to the early 1970s, and combined with the concept of minimally invasive surgery, the idea of surgical robotics was born in the late 1980s based on the principle of providing active telepresence to surgeons. Many research projects were initiated, creating a set of instruments for endoscopic telesurgery, while visionary surgeons built networks for telesurgical patient care, demonstrated transcontinental surgery, and performed procedures in weightlessness. Long-distance telesurgery became the testbed for new medical support concepts of space missions.

Methods

This article provides a complete review of the milestone experiments in the field, and describes a feasible concept to extend telemedicine beyond Earth orbit. With a possible foundation of an extraplanetary human outpost either on the Moon or on Mars, space agencies are carefully looking for effective and affordable solutions for life-support and medical care. The major challenges of surgery in weightlessness are also discussed.

Results

Teleoperated surgical robots have the potential to shape the future of extreme health care both in space and on Earth. Besides the apparent advantages, there are some serious challenges, primarily the difficulty of latency with teleoperation over long distances. Advanced virtualization and augmented-reality techniques should help human operators to adapt better to the special conditions. To meet safety standards and requirements in space, a three-layered architecture is recommended to provide the highest quality of telepresence technically achievable for provisional exploration missions.

Conclusion

Surgical robotic technology is an emerging interdisciplinary field, with a great potential impact on many areas of health care, including telemedicine. With the proposed three-layered concept—relying only on currently available technology—effective support of long-distance telesurgery and human space missions are both feasible.

Keywords

Robotic surgery Teleoperation Minimally invasive surgery Weightlessness 

Notes

Acknowledgment

The research was supported by the National Office for Research and Technology (NKTH), Hungarian National Scientific Research Foundation grants OTKA T69055, CK80316.

Disclosures

Drs. Benyó, Sándor, and Haidegger have no conflicts of interest or financial ties to disclose.

References

  1. 1.
    Pease RWJ (ed) (2003) Medical dictionary. Merriam-Webster, USAGoogle Scholar
  2. 2.
    SAGES Group (2000) Guidelines for the surgical practice of telemedicine. Society of American Gastrointestinal Endoscopic Surgeons. Surg Endosc 14(10):975–979Google Scholar
  3. 3.
    Rosser JC Jr, Young SM, Klonsky J (2007) Telementoring: an application whose time has come. Surg Endosc 21(8):1458–1463. doi: 10.1007/s00464-007-9263-3 PubMedCrossRefGoogle Scholar
  4. 4.
    Challacombe B, Kavoussi L, Patriciu A, Stoianovici D, Dasgupta P (2006) Technology Insight: telementoring and telesurgery in urology. Nat Clin Practice Urol 3:611–617CrossRefGoogle Scholar
  5. 5.
    Ballantyne GH (2007) The future of telerobotic surgery. In: Patel VR (ed) Robotic urologic surgery. Springer, Columbus, US, pp 199–206CrossRefGoogle Scholar
  6. 6.
    Sterbis JR, Hanly EJ, Herman BC, Marohn MR, Broderick TJ, Shih SP, Harnett B, Doarn C, Schenkman NS (2008) Transcontinental telesurgical nephrectomy using the da Vinci robot in a porcine model. Urology 71(5):971–973. doi: 10.1016/j.urology.2007.11.027 PubMedCrossRefGoogle Scholar
  7. 7.
    Lee BR, Caddedu JA, Janetschek G, Schulam P, Docimo SG, Moore RG, Partin AW, Kavoussi LR (1998) International surgical telementoring: our initial experience. Stud Health Technol Inform 50:41–47PubMedGoogle Scholar
  8. 8.
    Cubano M, Poulose BK, Talamini MA, Stewart R, Antosek LE, Lentz R, Nibe R, Kutka MF, Mendoza-Sagaon M (1999) Long-distance telementoring: a novel tool for laparoscopy aboard the USS Abraham Lincoln. Surg Endosc 13(7):673–678PubMedCrossRefGoogle Scholar
  9. 9.
    Fabrizio M, Lee B, Chan D, Stoianovici D, Jarrett T, Yang C, Kavoussi LR (2000) Effect of time delay on surgical performance during telesurgical manipulation. J Endourol 14(2):133–138PubMedCrossRefGoogle Scholar
  10. 10.
    Allen CS, Burnett R, Charles J, Cucinotta F, Fullerton R, Goodman JR, Griffith AD, Kosmo JJ, Perchonok M, Railsback J, Rajulu S, Stilwell D, Thomas G, Tri T (2003) Guidelines and capabilities for designing human missions, NASA/Johnson Space Center, TM-2003-210785Google Scholar
  11. 11.
    Alexander AD (1973) Impacts of telemation on modern society. Proc. of Human Factors and Ergonomics Society Annual Meeting 17(2):299–304Google Scholar
  12. 12.
    Satava RM (1995) Virtual reality, telesurgery, and the new world order of medicine. J Image Guided Surg 1:12–16CrossRefGoogle Scholar
  13. 13.
    Nathoo N, Cavusoglu MC, Vogelbaum MA, Barnett GH (2005) In touch with robotics: neurosurgery for the future. Neurosurgery 56(3):421–433. doi: 10.1227/01.NEU.0000153929.68024 PubMedCrossRefGoogle Scholar
  14. 14.
    Eadie LH, Seifalian aM, Davidson BR (2003) Telemedicine in surgery. Br J Surg 90(6):647–658. doi: 10.1002/bjs.4168 PubMedCrossRefGoogle Scholar
  15. 15.
    Ballantyne GH, Marescaux J, Giulianotti PC (eds) (2004) Primer of robotic & telerobotic surgery. Lippincott Williams & Wilkins, Philadelphia, PAGoogle Scholar
  16. 16.
    Flynn E (2005) Telesurgery in the United States. J Homeland Defense 6:24–28Google Scholar
  17. 17.
    Nguan C, Miller B, Patel R, Luke PP, Schlachta CM (2008) Pre-clinical remote telesurgery trial of a da Vinci telesurgery prototype. Int J Med Robotics Comput Assist Surg 4:304–309. doi: 10.1002/rcs.210 CrossRefGoogle Scholar
  18. 18.
    Mendez I, Hill R, Clarke D, Kolyvas G, Walling S (2005) Robotic long-distance telementoring in neurosurgery. Neurosurgery 56(3):434–440. doi: 10.1227/01.NEU.0000153928.51881.27 PubMedCrossRefGoogle Scholar
  19. 19.
    Kumar S, Marescaux J (eds) (2008) Telesurgery. Springer, BerlinGoogle Scholar
  20. 20.
    Rayman R (2009) Is surgery a remote possibility? Robotic surgical system under development has telesurgery capabilities. Health Technol Trends 21(7):5–7Google Scholar
  21. 21.
    Das H, Ohm TI, Boswell C, Steele RO, Rodriguez G (2001) Robot-assisted microsurgery development at JPL. In: Akay M, Marsh A (eds) Information technologies in medicine, Vol. II: rehabilitation and treatment. Wiley, New York, pp 85–99CrossRefGoogle Scholar
  22. 22.
    Rosen J, Hannaford B (2006) Doc at a distance. IEEE Spectrum 8(10):34–39CrossRefGoogle Scholar
  23. 23.
    Lum MJ, Friedman DC, Sankaranarayanan G, King H, Fodero K, Leuschke R, Hannaford B (2009) The RAVEN: design and validation of a telesurgery system. Int J Robot Res 28(9):1183–1197. doi: 10.1177/0278364909101795 CrossRefGoogle Scholar
  24. 24.
    Kamler K (2007) How I Survived a Zero-G Robot Operating Room: Extreme Surgeon. Popular Mechanics—online edition. Available: www.popularmechanics.com/science/robotics/4230102.html
  25. 25.
    Doarn CR, Anvari M, Low T, Broderick TJ (2009) Evaluation of teleoperated surgical robots in an enclosed undersea environment. Telemed J e-Health 15(4):325–335. doi: 10.1089/tmj.2008.0123 PubMedCrossRefGoogle Scholar
  26. 26.
    Hagn U, Tobergte RK, Jörg MN, Gröger GP, Seibold FF, Hacker AN et al (2010) DLR MiroSurge : a versatile system for research in endoscopic telesurgery. Int J CARS 5:183–193. doi: 10.1007/s11548-009-0372-4 CrossRefGoogle Scholar
  27. 27.
    Rentschler ME, Dumpert J, Platt SR, Oleynikov D, Farritor SM, Iagnemma K (2006) Mobile In Vivo Biopsy Robot. Proc. of the 2006 IEEE International Conference on Robotics and Automation, Orlando, pp 4155–4160Google Scholar
  28. 28.
    Menciassi A, Dario P (2009) Miniaturized robotic devices for endoluminal diagnosis and surgery: a single-module and a multiple-module approach. Proc. 31st Int Conf of the IEEE Engineering in Medicine and Biology Society, pp 6842–6845. doi: 10.1109/IEMBS.2009.5334474
  29. 29.
    Eirik L, Johansen B, Gjelsvik T, Langø T (2009) Ultrasound based localization of wireless microrobotic endoscopic capsule for the GI tract. Proc. 21st Conference of the Society for Medical Innovation and TechnologyGoogle Scholar
  30. 30.
    Lum M, Friedman D, Sankaranarayanan G, King H, Wright A, Sinanan M, Lendvay T, Rosen J, Hannaford B (2008) Objective assessment of telesurgical robot systems: Telerobotic FLS. Medicine Meets Virtual Reality (MMVR). Long Beach, CA, pp 263–265Google Scholar
  31. 31.
    King H, Hannaford B, Kwok K, Yang G, Griffiths P, Okamura A, et al (2010) Plugfest 2009: global interoperability in telerobotics and telemedicine. IEEE International Conference on Robotics and Automation, Anchorage, AK, pp 1733–1738Google Scholar
  32. 32.
    Marescaux J, Leroy J, Rubino F, Smith M, Vix M, Simone M, Mutter D (2002) Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg 235(4):487–492PubMedCrossRefGoogle Scholar
  33. 33.
    Anvari M (2004) Robot-assisted remote telepresence surgery. Surg Innov 11(2):123–128. doi: 10.1177/107155170401100209 CrossRefGoogle Scholar
  34. 34.
    Rayman R, Croome K, Galbraith N, Mcclure R, Morady R, Peterson S, Smith S, Subotic V, Van Wynsberghe A, Patel R, Primak S (2007) Robotic telesurgery: a real-world comparison of ground- and satellite-based Internet performance. Int J Med Robotics Comput Assist Surg 3:111–116. doi: 10.1002/rcs.133 CrossRefGoogle Scholar
  35. 35.
    Pappone C, Vicedomini G, Manguso F, Gugliotta F, Mazzone P, Gulletta S, Sora N, Sala S, Marzi A, Augello A, Livolsi L, Santagostino A, Santinelli V (2006) Robotic magnetic navigation for atrial fibrillation ablation. J Am Coll Cardiol 47(7):1390–1400. doi: 10.1016/j.jacc.2005.11.058 PubMedCrossRefGoogle Scholar
  36. 36.
    Thirsk R, Williams D, Anvari M (2007) NEEMO 7 undersea mission. Acta Astronautica 60(4–7):512–517. doi: 10.1016/j.actaastro.2006.09.015 CrossRefGoogle Scholar
  37. 37.
    Peters J, Fried G, Swanstrom L, Soper N, Sillin L (2004) Development and validation of a comprehensive program of education and assessment of the basic fundamentals of laparoscopic surgery. Surgery 135(1):21–27PubMedCrossRefGoogle Scholar
  38. 38.
    Campbell MR, Kirkpatrick AW, Billica RD, Johnston SL, Jennings R, Short D, Hamilton D, Dulchavsky SA (2001) Endoscopic surgery in weightlessness: the investigation of basic principles for surgery in space. Surg Endosc 15(12):1413–1418. doi: 10.1007/s004640080178 PubMedGoogle Scholar
  39. 39.
    Doctors remove tumor in first zero-g surgery. New Scientist (September 2006). Available: http://www.newscientist.com/article/dn10169-doctors-remove-tumour-in-first-zerog-surgery.html
  40. 40.
    Berlocher G (2009) Minimizing Latency in Satellite Networks. Via Satellite, Published at: www.viasatellite.com
  41. 41.
    Lum MJ, Rosen J, Lendvay TS, Wright AS, Sinanan MN, Hannaford B (2008) TeleRobotic fundamentals of laparoscopic surgery (FLS): effects of time delay-pilot study. Proceedings of the international conference of the IEEE engineering in medicine and biology society, pp 5597–600. doi: 10.1109/IEMBS.2008.4650483
  42. 42.
    Campbell MR, Billica RD (2008) Surgical capabilities. In: Barratt MR, Pool SL (eds) Principles of clinical medicine for space flight. Springer, Berlin, Ch. 6., pp 123–138Google Scholar
  43. 43.
    Haidegger T, Benyo Z (2008) Surgical robotic support for long duration space missions. Acta Astronautica 63(7–10):996–1005. doi: 10.1016/j.actaastro.2008.01.005 CrossRefGoogle Scholar
  44. 44.
    Thompson JM, Ottensmeyer MP, Sheridan TB (1999) Human factors in telesurgery: effects of time delay and asynchrony in video and control feedback with local manipulative assistance. Telemed J 5(2):129–137. doi: 10.1089/107830299312096 PubMedCrossRefGoogle Scholar
  45. 45.
    Rayman R, Croome K, Galbraith N, McClure R, Morady R, Peterson S, Smith S, Subotic V, Van Wynsberghe A, Primak S (2006) Long-distance robotic telesurgery: a feasibility study for care in remote environments. Int J Med Robotics Comput Assist Surg 2:216–224. doi: 10.1002/rcs.99 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Tamás Haidegger
    • 1
    • 3
  • József Sándor
    • 2
  • Zoltán Benyó
    • 1
  1. 1.Department of Control Engineering and Information TechnologyBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Department of Surgical EducationSemmelweis UniversityBudapestHungary
  3. 3.BME–IITBudapestHungary

Personalised recommendations