Surgical Endoscopy

, Volume 22, Issue 12, pp 2648–2653

CO2 pneumoperitoneum increases systemic but not local tumor spread after intraperitoneal murine neuroblastoma spillage in mice

  • Martin Metzelder
  • Joachim Kuebler
  • Akihiro Shimotakahara
  • Gertrud Vieten
  • Reinhard von Wasielewski
  • Benno Manfred Ure



Minimally invasive techniques are increasingly used for biopsy and resection of neuroblastoma, but the impact on the behavior of spilled tumor cells is unknown. We aimed to investigate whether CO2 pneumoperitoneum can affect local or systemic tumor manifestation after spillage of neuroblastoma cells into the peritoneal cavity.


Murine neuroblastoma cells (Neuro2a, 1x106) were inoculated into the peritoneal cavity of 25 male A/J mice, which subsequently underwent CO2 pneumoperitoneum (n = 12) or laparotomy (n = 13) for 1 h. At the 28th postoperative day, local (peritoneal and surface of the gut) and systemic (liver, lung, spine) tumor spread was graded in a blinded manner (1–4 point scale) and specimens were histologically examined for tumor manifestation (hematoxylin and eosin stain) and tumor cell proliferation rate (Ki-67-stain). In the case of no visible lesion, five random sections were histologically examined. Peritoneal carcinosis was graded macroscopically.


Tumor manifestations were detected in 10 out of 12 (83%) animals after CO2 pneumoperitoneum, and in 9 out of 13 (69%) after laparotomy (n.s.). Incidence of liver metastasis was higher after CO2 pneumoperitoneum versus laparotomy (83% versus 31%; p < 0.05). Incidence and grading of peritoneal carcinosis was not significantly different between the groups (n.s.). Intrapulmonary metastasis was found in one mouse of each group, but no metastasis of the spine. However, the grading of liver metastasis was higher after CO2 pneumoperitoneum compared to laparotomy (p < 0.05). Tumor cell proliferation (Ki-67 stain) in the liver did not differ between both groups. Moreover, proliferation always exceeded 50% of tumor cells, irrespective local or systemic tumor manifestation.


CO2 pneumoperitoneum increased intrahepatic metastasis, but not local peritoneal carcinosis in a murine neuroblastoma model. This suggests that laparoscopy could promote systemic dissemination of intraperitoneally spilled tumor cells when no chemotherapy is applied. It remains to be determined whether this is due to local immune suppression or direct modulation of tumor cell behavior.


Endoscopy CO2 pneumoperitoneum Tumor spillage Local metastasis Systemic metastasis Neuroblastoma 


  1. 1.
    Allendorf JD, Bessler M, Kayton ML, Oesterling SD, Treat MR, Nowygrod R, Whelan L (1995) Increased tumor establishment and growth after laparotomy vs laparoscopy in a murine model. Arch Surg 130:649–653PubMedGoogle Scholar
  2. 2.
    Allendorf JD, Bessler M, Kayton ML, Whelan RL, Treat MR, Nowygrod R (1995) Tumor growth after laparotomy or laparoscopy. A preliminary study. Surg Endosc 9:49–52Google Scholar
  3. 3.
    Are C, Talamini MA (2005) Laparoscopy and malignancy. J Laparoendosc Adv Surg Tech 15:38–47CrossRefGoogle Scholar
  4. 4.
    Bouvy ND, Marquet RL, Jeekel H, Bonjer HJ (1997) Laparoscopic surgery is associated with less tumor growth stimulation than conventional surgery: an experimental study. Br J Surg 84:358–361PubMedCrossRefGoogle Scholar
  5. 5.
    Clinical Outcomes of Surgical Therapy Study Group (2004) A comparison of laparoscopically assisted and open colectomy for colon cancer. N Engl J Med 350:2050–2059CrossRefGoogle Scholar
  6. 6.
    Dahn S, Schwalbach P, Wohlecke F, Benner A, Kuntz C (2003) Influence of different gases used for laparoscopy (helium, carbon dioxide, room air, xenon) on tumor volume, proliferation and apoptosis. Surg Endosc 17:1653–1657 PubMedCrossRefGoogle Scholar
  7. 7.
    Da Costa ML, Redmond HP, Finnegan N, Flynn M, Bouchier-Hayes D (1998) Laparotomy and laparoscopy differentially accelerate experimental flank tumour growth. Br J Surg 85:1439–1442PubMedCrossRefGoogle Scholar
  8. 8.
    De Lagausie P, Berrebi D, Michon J, Philippe-Chomette P, El Ghoneimi A, Garel C, Brisse H, Peuchmar M, Aigrin Y (2003) Laparoscopic adrenal surgery for neuroblastomas in children. J Urol 170:932–935PubMedCrossRefGoogle Scholar
  9. 9.
    Gutt CN, Bruttel T, Brier C, Paolucci V, Encke A (1998) CO2 pneumoperitoneum inhibits in vitro proliferation of human carcinoma cell. Langenbecks Arch Chir Suppl Kongressbd 115:535–540PubMedGoogle Scholar
  10. 10.
    Gutt CN, Riemer V, Kim ZG, Jacobi CA, Paolucci V, Lorenz M (1999) Impact of laparoscopic colonic resection on tumor growth and spread in an experimental model. Br J Surg 86:1180–1184PubMedCrossRefGoogle Scholar
  11. 11.
    Gutt CN, Gessmann T, Schemmer P, Mehrabi A, Schmandra T, Kim ZG (2003) The impact of carbon dioxide on experimental liver metastasis, macrophages, and cell adhesion molecules. Surg Endosc 17:1628–1631PubMedCrossRefGoogle Scholar
  12. 12.
    Holcomb GW, Tomita SS, Haase GM, Dillon PW, Newman KD, Applebaum H, Wiener ES (1995) Minimally invasive surgery in children with cancer. Cancer 76:121–128PubMedCrossRefGoogle Scholar
  13. 13.
    Ishida H, Murata N, Yamada H, Nakada H, Takeuchi I, Shimomura K, Fujioka M, Idezuki Y (2000) Pneumoperitoneum with carbon dioxide enhances liver metastases of cancer cells implanted into the portal vein in rabbits. Surg Endosc 14:239–242PubMedCrossRefGoogle Scholar
  14. 14.
    Iwanaka T, Arya G, Ziegler MM (1998) Minimally invasive surgery does not improve the outcome in a model of retroperitoneal murine neuroblastoma. Pediatr Surg Int 13:149–153PubMedCrossRefGoogle Scholar
  15. 15.
    Iwanaka T, Arya G, Ziegler MM (1998) Mechanism and prevention of port-site tumor recurrence after laparoscopy in a murine model. J Pediatr Surg 33:475–461CrossRefGoogle Scholar
  16. 16.
    Iwanaka T, Arai M, Kawashima H, Kudou S, Fujishiro J, Imaizumi S, Yamamoto K, Hanada R, Kikuchi A, Aihara T, Kishimoto H (2004) Endosurgical procedures for pediatric solid tumors. Pediatr Surg Int 20:39–42PubMedCrossRefGoogle Scholar
  17. 17.
    Iwanaka T, Arai M, Yamamoto H, Fukuzawa M, Kubota A, Kouchi K, Nio M, Satomi A, Sasaki F, Yoneda A, Ohhama Y, Takahara H, Morikawa Y, Miyano T (2003) No incidence of port-site recurrence after endosurgical procedure for pediatric malignancies. Pediatr Surg Int 19:200–203PubMedGoogle Scholar
  18. 18.
    Izumi K, Ishikawa K, Tojigamori M, Matsui Y, Shiraishi N, Kitano S (2005) Liver metastasis and ICAM-1 mRNA expression in the liver after carbon dioxide pneumoperitoneum in a murine model. Surg Endosc 19:1049–1054PubMedCrossRefGoogle Scholar
  19. 19.
    Jackson PG, Evans SR (2000) Intraperitoneal macrophages and tumor immunity: A review. J Surg Oncol 75:146–154PubMedCrossRefGoogle Scholar
  20. 20.
    Jacobi CA, Ordemann J, Bohm B, Zieren HU, Liebenthal C, Volk HD, Muller JM (1997) The influence of laparotomy and laparoscopy on tumor growth in a rat model. Surg Endosc 11:618–621PubMedCrossRefGoogle Scholar
  21. 21.
    Jacobi CA, Wenger F, Sabat R, Volk T, Ordemann J, Muller JM (1998) The impact of laparoscopy with carbon dioxide versus helium on immunologic function and tumor growth in a rat model. Dig Surg 15:110–116PubMedCrossRefGoogle Scholar
  22. 22.
    Jacobi CA, Wenger FA, Ordemann J, Gutt C, Sabat R, Muller JM (1998) Experimental study of the effect of intra-abdominal pressure during laparoscopy on tumour growth and port site metastasis. Br J Surg 85:1419–1422PubMedCrossRefGoogle Scholar
  23. 23.
    Jesch NK, Vieten G, Tschernig T, Schroedel W, Ure BM (2005) Mini-laparotomy and full laparotomy, but not laparoscopy, alter hepatic macrophage populations in a rat model. Surg Endosc 19:804–810 PubMedCrossRefGoogle Scholar
  24. 24.
    Krams M, Hero B, Berthold F, Parwaresch R, Harms D, Rudolph P (2002) Proliferation marker KI-S5 discriminates between favorable and adverse prognosis in advanced stages of neuroblastoma with and without MYCN amplification. Cancer 94:854–861PubMedCrossRefGoogle Scholar
  25. 25.
    Kuebler JF, Kos M, Jesch NK, Metzelder ML, van der Zee DC, Bax KM, Vieten G, Ure BM (2007) Carbon dioxide suppresses macrophage superoxide anion production independent of extracellular pH and mitochondrial activity. J Pediatr Surg 42:244–248PubMedCrossRefGoogle Scholar
  26. 26.
    Lacy AM, Garcia-Valdecasas JC, Delgado S, Castells A, Taura P, Pique JM, Visa J (2002) Laparoscopic assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial. Lancet 359:2224–2229PubMedCrossRefGoogle Scholar
  27. 27.
    Lee SW, Gleason N, Blanco I, Asi ZK, Whelan RL (2002) Higher colon cancer tumor proliferative index and lower tumor cell death rate in mice undergoing laparotomy versus insufflation. Surg Endosc 16:36–39PubMedCrossRefGoogle Scholar
  28. 28.
    Maitra A, Yashima K, Rathi A, Timmons CF, Rogers BB, Shay JW, Gazdar AF (1999) The RNA component of telomerase as a marker of biologic potential and clinical outcome in childhood neuroblastic tumors. Cancer 85:741–749 PubMedCrossRefGoogle Scholar
  29. 29.
    Maris JM, Hogarty MD, Bagatell R, Cohn SL (2007) Neuroblastoma. Lancet 369:2106–2120PubMedCrossRefGoogle Scholar
  30. 30.
    Mathew G, Watson DI, Rofe AM, Ellis T, Jamieson GG (1997) Adverse impact of pneumoperitoneum on intraperitoneal implantation and growth of tumour cell suspension in an experimental model. Aust NZ J Surg 67:289–292CrossRefGoogle Scholar
  31. 31.
    Metzelder ML, Kuebler JF, Shimotakahara A, Glueer S, Grigull L, Ure BM (2007) Role of diagnostic and ablative minimally invasive surgery for pediatric malignancies. Cancer 109:2341–2348CrossRefGoogle Scholar
  32. 32.
    Neuhaus SJ, Watson DI (2004) Pneumoperitoneum and peritoneal surface changes: a review. Surg Endosc 18:1316–1322PubMedCrossRefGoogle Scholar
  33. 33.
    Petty JK, Bensard DD, Partrick DA, Hendrickson RJ, Albano EA, Karrer FM (2006) Resection of neurogenic tumors in children: is thoracoscopy superior to thoracotomy? J Am Coll Surg 203:699–703PubMedCrossRefGoogle Scholar
  34. 34.
    Sartorelli KH, Partrick D, Meagher DP (1996) Port-site recurrence after thoracoscopic resection of pulmonary metastasis owing to osteogenic sarcoma. J Pediatr Surg 31:1443–1444PubMedCrossRefGoogle Scholar
  35. 35.
    Schmidt AI, Reismann M, Kubler JF, Vieten G, Bangen C, Shimotakahara A, Gluer S, Nustede R, Ure BM (2006) Exposure to carbon dioxide and helium reduces in  vitro proliferation of pediatric tumor cells. Pediatr Surg Int 22:72–77PubMedCrossRefGoogle Scholar
  36. 36.
    Shimotakahara A, Kuebler JF, Vieten G, Metzelder ML, Petersen C, Ure BM (2007) Pleural macrophages are the dominant cell population in the thoracic cavity with an inflammatory cytokine profile similar to peritoneal macrophages. Pediatr Surg Int 23:447–451PubMedCrossRefGoogle Scholar
  37. 37.
    Southall JC, Lee SW, Allendorf JD, Bessler M, Whelan RL (1998) Colon adenocarcinoma and B-16 melanoma grow larger following laparotomy versus pneumoperitoneum in a murine model. Dis Colon Rectum 41:564–569PubMedCrossRefGoogle Scholar
  38. 38.
    Spurbeck WW, Davidoff AM, Lobe TE, Rao BN, Schropp KP, Shochat SJ (2004) Minimally invasive surgery in pediatric cancer patients. Ann Surg Oncol 11:340–343PubMedCrossRefGoogle Scholar
  39. 39.
    Suita S, Tajiri T, Higashi M, Tanaka S, Kinoshita Y, Takahashi Y, Tatsuta K (2007) Insights into infant neuroblastomas based on an analysis of neuroblastoma detected by mass screening at 6 months of age in Japan. Eur J Pediatr Surg 17:23–28PubMedCrossRefGoogle Scholar
  40. 40.
    Till H, Metzger R, Bergmann F, Haeberle B, Schaeffer K, von Schweinitz D, Gahlen J, Prosst RL (2006) Tumor model for laparoscopy in pediatric oncology: subperitoneal inoculation of human hepatoblastoma cells in nude rats. Eur J Pediatr Surg 16:231–234PubMedCrossRefGoogle Scholar
  41. 41.
    Ure BM, Niewold TA, Bax NM, Ham M, van der Zee DC, Essen GJ (2002) Peritoneal systemic, and distant organ inflammatory responses are reduced by a laparoscopic approach and carbon dioxide versus air. Surg Endosc 16:836–842PubMedCrossRefGoogle Scholar
  42. 42.
    Warmann S, Fuchs J, Jesch NK, Schrappe M, Ure BM (2003) A prospective study of minimally invasive techniques in pediatric surgical oncology: preliminary report. Med Pediatr Oncol 40:155–157PubMedCrossRefGoogle Scholar
  43. 43.
    Ziegler MM, Naito H, McCarrick JW III, Topalian SL, Ricci JL, Ruben GD, Cooper A, Krasna IH (1986) C-1300 murine neuroblastoma: a suitable animal model of human disease. In:Brooks EF (ed) Malignant tumors in childhood. University of Texas, Austin, pp 114–126Google Scholar
  44. 44.
    Ziegler MM, Ishizu H, Nagabuchi E, Takada N, Arya G (1997) A comparative review of the immunology of murine neuroblastoma and human neuroblastoma. Cancer 79:1757–1766PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Martin Metzelder
    • 1
  • Joachim Kuebler
    • 1
  • Akihiro Shimotakahara
    • 1
  • Gertrud Vieten
    • 1
  • Reinhard von Wasielewski
    • 2
  • Benno Manfred Ure
    • 1
  1. 1.Department of Pediatric SurgeryHannover Medical SchoolHannoverGermany
  2. 2.Department of PathologyHannover Medical SchoolHannoverGermany

Personalised recommendations