Advertisement

Surgical Endoscopy

, Volume 23, Issue 4, pp 800–807 | Cite as

A comparison of gastrojejunal anastomoses with or without buttressing in a porcine model

  • William W. Hope
  • Marc Zerey
  • Thomas M. Schmelzer
  • William L. Newcomb
  • B. Lauren Paton
  • Jessica J. Heath
  • Richard D. Peindl
  • H. James Norton
  • Amy E. Lincourt
  • B. Todd Heniford
  • Keith S. GersinEmail author
Article

Abstract

Introduction

The addition of staple-line reinforcements on circular anastomoses has not been well studied. We histologically and mechanically analyzed circular- stapled anastomoses with and without bioabsorbable staple-line reinforcement (SeamGuard®, W. L. Gore & Associates, Flagstaff, AZ) in a porcine model.

Methods

Gastrojejunal anastomoses were constructed using a #25 EEA Proximate ILS® (Ethicon Endo-Surgery, Cincinnati, OH) mechanical stapling device with and without Bioabsorbable SeamGuard® (BSG). Gastrojejunal anastomoses were resected acutely and at 1 week, and burst-pressure testing and histological analysis were performed. Standardized grading systems for inflammation, collagen deposition, vascularity, and serosal inflammation were used to compare the two anastomosis types.

Results

Acute burst pressures were significantly higher with BSG than with staples alone (1.37 versus 0.39 psi, p = 0.0075). Burst pressures at 1 week were significantly lower with BSG than with staples alone (2.24 versus 3.86 psi, p = 0.0353); however, both readings were above normal physiologic intestinal pressures. There was no statistical difference in inflammation (13.4 versus 15.6, p = 0.073), width of mucosa (3.2 mm versus 3.2 mm, p = 0.974), adhesion formation (0 versus 0.5, p = 0.575), number of blood vessels (0.5 versus 1.0, p = 0.056), or serosal inflammation (2.0 versus 1.0, p = 0.27) between the stapled anastomoses and those buttressed with BSG. Stapled-only anastomoses had statistically more collagen (2.0 versus 1.0, p = 0.005) than the anastomoses supported with BSG.

Conclusions

The addition of BSG as a staple-line reinforcement acutely improves the burst strength of a circular anastomosis but not at 1 week. At 1 week, a decrease in collagen content with the BSG-buttressed stapled anastomosis was the only difference in the histologic parameters studied with no difference in vascularity, adhesions, or inflammation. The long-term effect of BSG on anastomotic strength or scarring is yet to be determined. The clinical implications may include decreased stricture formation and also decreased strength at anastomoses.

Key Words

SeamGuard® Staple-line reinforcement Burst pressures Anastomotic leak Anastomosis model Anastomosis 

Notes

Acknowledgement

Financial support for this project was provided by W. L. Gore & Associates, Inc.

References

  1. 1.
    Robicsek F (1980) The birth of the surgical stapler. Surg Gynecol Obstet 150:579–583PubMedGoogle Scholar
  2. 2.
    Ravitch MM, Steichen FM (1979) A stapling instrument for end-to-end inverting anastomoses in the gastrointestinal tract. Ann Surg 189:791–797PubMedCrossRefGoogle Scholar
  3. 3.
    Weiss M, Haj M (2001) Gastrointestinal anastomosis with histoacryl glue in rats. J Invest Surg 14:13–19PubMedCrossRefGoogle Scholar
  4. 4.
    Malthaner RA, Hakki FZ, Saini N, Andrews BL, Harmon JW (1990) Anastomotic compression button: a new mechanical device for sutureless bowel anastomosis. Dis Colon Rectum 33:291–297PubMedCrossRefGoogle Scholar
  5. 5.
    Sjolin KE, Skeie E, Naver L, Svendsen O, Jacobsen SD (1994) New technique in anastomotic surgery—experimental and preliminary clinical experience. Zentralbl Chir 119:661–666; discussion 667–670PubMedGoogle Scholar
  6. 6.
    Hardy KJ (1990) Non-suture anastomosis: the historical development. Aust NZ J Surg 60:625–633CrossRefGoogle Scholar
  7. 7.
    George WD (1991) Suturing or stapling in gastrointestinal surgery: a prospective randomized study. West of Scotland and Highland Anastomosis Study Group. Br J Surg 78:337–341CrossRefGoogle Scholar
  8. 8.
    Moreno-Gonzalez E, Vara-Thorbeck R (1987) Stapler versus manual anastomosis in gastrointestinal surgery. Langenbecks Arch Chir 372:99–103PubMedCrossRefGoogle Scholar
  9. 9.
    Chassin JL, Rifkind KM, Sussman B, Kassel B, Fingaret A, Drager S, Chassin PS (1978) The stapled gastrointestinal tract anastomosis: incidence of postoperative complications compared with the sutured anastomosis. Ann Surg 188:689–696PubMedCrossRefGoogle Scholar
  10. 10.
    Hori S, Ochiai T, Gunji Y, Hayashi H, Suzuki T (2004) A prospective randomized trial of hand-sutured versus mechanically stapled anastomoses for gastroduodenostomy after distal gastrectomy. Gastric Cancer 7:24–30PubMedCrossRefGoogle Scholar
  11. 11.
    Lustosa SA, Matos D, Atallah AN, Castro AA (2001) Stapled versus handsewn methods for colorectal anastomosis surgery. Cochrane Database Syst Rev CD003144Google Scholar
  12. 12.
    Angrisani L, Lorenzo M, Borrelli V, Ciannella M, Bassi UA, Scarano P (2004) The use of bovine pericardial strips on linear stapler to reduce extraluminal bleeding during laparoscopic gastric bypass: prospective randomized clinical trial. Obes Surg 14:1198–1202PubMedCrossRefGoogle Scholar
  13. 13.
    Arnold W, Shikora SA (2005) A comparison of burst pressure between buttressed versus non-buttressed staple-lines in an animal model. Obes Surg 15:164–171PubMedCrossRefGoogle Scholar
  14. 14.
    Consten EC, Gagner M (2004) Staple-line reinforcement techniques with different buttressing materials used for laparoscopic gastrointestinal surgery: a new strategy to diminish perioperative complications. Surg Technol Int 13:59–63PubMedGoogle Scholar
  15. 15.
    de la Portilla F, Zbar AP, Rada R, Vega J, Cisneros N, Maldonado VH, Utrera A, Espinosa E (2006) Bioabsorbable staple-line reinforcement to reduce staple-line bleeding in the transection of mesenteric vessels during laparoscopic colorectal resection: a pilot study. Tech Coloproctol 10:335–338CrossRefGoogle Scholar
  16. 16.
    Franklin ME Jr, Berghoff KE, Arellano PP, Trevino JM, Abrego-Medina D (2005) Safety and efficacy of the use of bioabsorbable SeamGuard in colorectal surgery at the Texas endosurgery institute. Surg Laparosc Endosc Percutan Tech 15:9–13PubMedCrossRefGoogle Scholar
  17. 17.
    Nguyen NT, Longoria M, Chalifoux S, Wilson SE (2005) Bioabsorbable staple line reinforcement for laparoscopic gastrointestinal surgery. Surg Technol Int 14:107–111PubMedGoogle Scholar
  18. 18.
    Nguyen NT, Longoria M, Welbourne S, Sabio A, Wilson SE (2005) Glycolide copolymer staple-line reinforcement reduces staple site bleeding during laparoscopic gastric bypass: a prospective randomized trial. Arch Surg 140:773–778PubMedCrossRefGoogle Scholar
  19. 19.
    Shikora SA (2004) The use of staple-line reinforcement during laparoscopic gastric bypass. Obes Surg 14:1313–1320PubMedCrossRefGoogle Scholar
  20. 20.
    Zerey M, Peindl RD, Paton B, Hope W, Newcomb W, Schmelzer T, Cristiano J, Heath J, Lincourt AE, Kercher KW, Gersin K, Heniford BT (2007) Anastomotic leaks: a scientific perspective. J Surg Res 137:252–253CrossRefGoogle Scholar
  21. 21.
    Brundage SI, Jurkovich GJ, Grossman DC, Tong WC, Mack CD, Maier RV (1999) Stapled versus sutured gastrointestinal anastomoses in the trauma patient. J Trauma 47:500–507; discussion 507–508PubMedCrossRefGoogle Scholar
  22. 22.
    Brundage SI, Jurkovich GJ, Hoyt DB, Patel NY, Ross SE, Marburger R et al (2001) Stapled versus sutured gastrointestinal anastomoses in the trauma patient: a multicenter trial. J Trauma 51:1054–1061PubMedCrossRefGoogle Scholar
  23. 23.
    Yo LS, Consten EC, Quarles van Ufford HM, Gooszen HG, Gagner M (2006) Buttressing of the staple line in gastrointestinal anastomoses: overview of new technology designed to reduce perioperative complications. Dig Surg 23:283–291PubMedCrossRefGoogle Scholar
  24. 24.
    Saito Y, Omiya H, Shomura Y, Minami K, Imamura H (2002) A new bioabsorbable sleeve for staple-line reinforcement: report of a clinical experience. Surg Today 32:297–299PubMedCrossRefGoogle Scholar
  25. 25.
    Minami K, Saito Y, Shomura Y, Imamura H (2003) A device to prevent an air-leakage after a thoracoscopic surgery for spontaneous pneumothorax. Kyobu Geka 56:904–907PubMedGoogle Scholar
  26. 26.
    Miller JI Jr, Landreneau RJ, Wright CE, Santucci TS, Sammons BH (2001) A comparative study of buttressed versus nonbuttressed staple line in pulmonary resections. Ann Thorac Surg 71:319–322; discussion 323PubMedCrossRefGoogle Scholar
  27. 27.
    Olmos-Zuniga JR, Jasso-Victoria R, Sotres-Vega A, Gaxiola-Gaxiola M, Cedillo-Ley I, Argote-Greene LM et al (2001) Suture-line reinforcement with glutaraldehyde-preserved bovine pericardium for nonanatomic resection of lung tissue. J Invest Surg 14:161–168PubMedCrossRefGoogle Scholar
  28. 28.
    Murray KD, Ho CH, Hsia JY, Little AG (2002) The influence of pulmonary staple line reinforcement on air leaks. Chest 122:2146–2149PubMedCrossRefGoogle Scholar
  29. 29.
    Vaughn CC, Vaughn PL, Vaughn CC III, Sawyer P, Manning M, Anderson D, Roseman L, Herbst TJ (1998) Tissue response to biomaterials used for staple-line reinforcement in lung resection: a comparison between expanded polytetrafluoroethylene and bovine pericardium. Eur J Cardiothorac Surg 13:259–265PubMedCrossRefGoogle Scholar
  30. 30.
    Downey DM, Harre JG, Dolan JP (2005) Increased burst pressure in gastrointestinal staple-lines using reinforcement with a bioprosthetic material. Obes Surg 15:1379–1383PubMedCrossRefGoogle Scholar
  31. 31.
    Downey DM, Harre JG, Pratt JW (2006) Functional comparison of staple line reinforcements in lung resection. Ann Thorac Surg 82:1880–1883PubMedCrossRefGoogle Scholar
  32. 32.
    Downey DM, Michel M, Harre JG, Pratt JW (2006) Functional assessment of a new staple line reinforcement in lung resection. J Surg Res 131:49–52PubMedCrossRefGoogle Scholar
  33. 33.
    Katz AR, Mukherjee DP, Kaganov AL, Gordon S (1985) A new synthetic monofilament absorbable suture made from polytrimethylene carbonate. Surg Gynecol Obstet 161:213–222PubMedGoogle Scholar
  34. 34.
    Metz SA, Chegini N, Masterson BJ (1990) In vivo and in vitro degradation of monofilament absorbable sutures, PDS and Maxon. Biomaterials 11:41–45PubMedCrossRefGoogle Scholar
  35. 35.
    Farrar DF, Gillson RK (2002) Hydrolytic degradation of polyglyconate B: the relationship between degradation time, strength and molecular weight. Biomaterials 23:3905–3912PubMedCrossRefGoogle Scholar
  36. 36.
    Van Winkle W Jr, Hastings JC (1972) Considerations in the choice of suture material for various tissues. Surg Gynecol Obstet 135:113–126PubMedGoogle Scholar
  37. 37.
    Kangas J, Paasimaa S, Makela P, Leppilahti J, Tormala P, Waris T et al (2001) Comparison of strength properties of poly-L/D-lactide (PLDLA) 96/4 and polyglyconate (Maxon) sutures: in vitro, in the subcutis, and in the achilles tendon of rabbits. J Biomed Mater Res 58:121–126PubMedCrossRefGoogle Scholar
  38. 38.
    Shamji MF, Maziak DE, Shamji FM, Matzinger FR, Perkins DG (2002) Surgical staple metalloptysis after apical bullectomy: a reaction to bovine pericardium? Ann Thorac Surg 74:258–261PubMedCrossRefGoogle Scholar
  39. 39.
    Provencher S, Deslauriers J (2003) Late complication of bovine pericardium patches used for lung volume reduction surgery. Eur J Cardiothorac Surg 23:1059–1061PubMedCrossRefGoogle Scholar
  40. 40.
    Iwasaki A, Yoshinaga Y, Shirakusa T (2004) Successful removal of bovine pericardium by bronchoscope after lung volume reduction surgery. Ann Thorac Surg 78:2156–2157PubMedCrossRefGoogle Scholar
  41. 41.
    Consten EC, Dakin GF, Gagner M (2004) Intraluminal migration of bovine pericardial strips used to reinforce the gastric staple-line in laparoscopic bariatric surgery. Obes Surg 14:549–554PubMedCrossRefGoogle Scholar
  42. 42.
    LeVeen HH, Wapnick S, Falk G, Olivas O, Bhat D, Gaurdre M, Patel M (1976) Effects of prophylactic antibiotics on colonic healing. Am J Surg 131:47–53PubMedCrossRefGoogle Scholar
  43. 43.
    Hastings JC, Winkle WV, Barker E, Hines D, Nichols W (1975) Effect of suture materials on healing wounds of the stomach and colon. Surg Gynecol Obstet 140:701–707PubMedGoogle Scholar
  44. 44.
    Zerey M, Peindl RD, Paton BL, Hope WW, Newcomb WL, Schmelzer TM, Cristiano JA, Heath JJ, Lincourt AE, Kercher KW, Gersin K, Heniford BT (2007) Anastomotic leaks: a scientific perspective. Poster Presentation, Association for Academic Surgery, Academic Surgical Congress, February 2007, Phoenix, AZGoogle Scholar
  45. 45.
    Nelsen TS, Anders CJ (1966) Dynamic aspects of small intestinal rupture with special consideration of anastomotic strength. Arch Surg 93:309–314PubMedGoogle Scholar
  46. 46.
    Jonsson K, Jiborn H, Zederfeldt B (1983) Breaking strength of small intestinal anastomoses. Am J Surg 145:800–803PubMedCrossRefGoogle Scholar
  47. 47.
    Hendriks T, Mastboom WJ (1990) Healing of experimental intestinal anastomoses. parameters for repair. Dis Colon Rectum 33:891–901PubMedCrossRefGoogle Scholar
  48. 48.
    Syk I, Agren MS, Adawi D, Jeppsson B (2001) Inhibition of matrix metalloproteinases enhances breaking strength of colonic anastomoses in an experimental model. Br J Surg 88:228–234PubMedCrossRefGoogle Scholar
  49. 49.
    Consten EC, Gagner M, Pomp A, Inabnet WB (2004) Decreased bleeding after laparoscopic sleeve gastrectomy with or without duodenal switch for morbid obesity using a stapled buttressed absorbable polymer membrane. Obes Surg 14:1360–1366PubMedCrossRefGoogle Scholar
  50. 50.
    Pandolfino JE, Curry J, Shi G, Joehl RJ, Brasseur JG, Kahrilas PJ (2005) Restoration of normal distensive characteristics of the esophagogastric junction after fundoplication. Ann Surg 242:43–48PubMedCrossRefGoogle Scholar
  51. 51.
    Peacock EE Jr, van Winkle W Jr (1976) The biochemistry and the environment of wounds and their relation to wound strength. In: Surgery and biology of wound repair. WB Saunders, PhiladelphiaGoogle Scholar
  52. 52.
    Halsted WS (1987) Circular suture of the intestine—an experimental study. Am J Med Sci 94:436–461Google Scholar
  53. 53.
    Stallmach A, Schuppan D, Riese HH, Matthes H, Riecken EO (1992) Increased collagen type III synthesis by fibroblasts isolated from strictures of patients with Crohn’s disease. Gastroenterology 102:1920–1929PubMedGoogle Scholar
  54. 54.
    Burke JP, Mulsow JJ, O’Keane C, Docherty NG, Watson RW, O’Connell PR (2006) Fibrogenesis in Crohn’s disease. Am J Gastroenterol 102:439–448PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • William W. Hope
    • 1
  • Marc Zerey
    • 1
  • Thomas M. Schmelzer
    • 1
  • William L. Newcomb
    • 1
  • B. Lauren Paton
    • 1
  • Jessica J. Heath
    • 1
  • Richard D. Peindl
    • 1
  • H. James Norton
    • 1
  • Amy E. Lincourt
    • 1
  • B. Todd Heniford
    • 1
  • Keith S. Gersin
    • 1
    Email author
  1. 1.Division of Gastrointestinal and Minimally Invasive Surgery, Department of SurgeryCarolinas Medical Center, North Carolinas HealthCare SystemCharlotteUSA

Personalised recommendations