Skip to main content
Log in

Swallow Safety is Determined by Bolus Volume During Infant Feeding in an Animal Model

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Feeding difficulties are especially prevalent in preterm infants, although the mechanisms driving these difficulties are poorly understood due to a lack of data on healthy infants. One potential mechanism of dysphagia in adults is correlated with bolus volume. Yet, whether and how bolus volume impacts swallow safety in infant feeding is unknown. A further complication for safe infant swallowing is recurrent laryngeal nerve (RLN) injury due to patent ductus arteriosus surgery, which exacerbates the issues that preterm infants face and can increase the risk of dysphagia. Here, we used a validated animal model feeding freely to test the effect of preterm birth, postnatal maturation and RLN lesion and their interactions on swallow safety. We also tested whether bolus size differed with lesion or birth status, and the relationship between bolus size and swallow safety. We found very little effect of lesion on swallow safety, and preterm infants did not experience more penetration or aspiration than term infants. However, term infants swallowed larger boluses than preterm infants, even after correcting for body size. Bolus size was the primary predictor of penetration or aspiration, with larger boluses being more likely to result in greater degrees of dysphagia irrespective of age or lesion status. These results highlight that penetration and aspiration are likely normal occurrences in infant feeding. Further, when comorbidities, such as RLN lesion or preterm birth are present, limiting bolus size may be an effective means to reduce incidences of penetration and aspiration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gewolb IH, Vice FL. Maturational changes in the rhythms, patterning, and coordination of respiration and swallow during feeding in preterm and term infants. Dev Med Child Neurol. 2006;48:589–94.

    Article  PubMed  Google Scholar 

  2. Amaizu N, Shulman RJ, Schanler RJ, Lau C. Maturation of oral feeding skills in preterm infants. Acta Paediatr. 2008;97:61–7.

    Article  CAS  PubMed  Google Scholar 

  3. Gould FDH, Lammers AR, Ohlemacher J, Ballester A, Fraley L, Gross A, et al. The physiologic impact of unilateral recurrent laryngeal nerve (RLN) lesion on infant oropharyngeal and esophageal performance. Dysphagia. 2015;30:714–22.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Humbert IA, Lokhande A, Christopherson H, German R, Stone A. Adaptation of swallowing hyo-laryngeal kinematics is distinct in oral vs. pharyngeal sensory processing. J Appl Physiol. 2012;112:1698–705.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Miyoka Y, Ashida I, Kawakami S, Tamaki Y, Miyaoka S. Activity patterns of the suprahyoid muscles during swallowing of different fluid volumes. J Oral Rehabil. 2010;37:575–82.

    Google Scholar 

  6. Park JW, Sim GJ, Yang DC, Lee KH, Chang JH, Nam KY, et al. Increased bolus volume effect on delayed pharyngeal swallowing response in post-stroke oropharyngeal dysphagia: A pilot study. Ann Rehabil Med. 2016;40:1018–23.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hiss SG, Treole K, Stuart A. Effects of age, gender, bolus volume, and trial on swallowing apnea duration and swallow/respiratory phase relationships of normal adults. Dysphagia. 2001;16:128–35.

    Article  CAS  PubMed  Google Scholar 

  8. Butler SG, Stuart A, Leng X, Rees C, Williamson J, Kritchevsky SB. Factors influencing aspiration during swallowing in healthy older adults. Laryngoscope. 2010;120:2147–52.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Belo LR, Gomes NAC, Coriolano MDGWDS, De Souza ES, Moura DAA, Asano AG, et al. The relationship between limit of dysphagia and average volume per swallow in patients with Parkinson’s disease. Dysphagia. 2014;29:419–24.

    Article  PubMed  Google Scholar 

  10. Gould FDH, Yglesias B, Ohlemacher J, German RZ. Pre-pharyngeal Swallow Effects of Recurrent Laryngeal Nerve Lesion on Bolus Shape and Airway Protection in an Infant Pig Model. Dysphagia. 2017;32:362–73.

    Article  PubMed  Google Scholar 

  11. Butler SG, Stuart A, Markley L, Feng X, Kritchevsky SB. Aspiration as a function of age, sex, liquid type, bolus volume, and bolus delivery across the healthy adult life span. Ann Otol Rhinol Laryngol. 2018;127:21–322.

    Article  PubMed  Google Scholar 

  12. Omari TI, Dejaeger E, Tack J. Effect of bolus volume and viscosity on pharyngeal automated impedance manometry variables derived for broad dysphagia patients. Dysphagia. 2013;28:146–52.

    Article  PubMed  Google Scholar 

  13. Bryant-Waugh R, Markham L, Kreipe RE, Walsh BT. Feeding and eating disorders in childhood. Int J Eat Disord. 2010;43:98–111.

    PubMed  Google Scholar 

  14. Rommel N, van Wijk M, Boets B, Hebbard G, Haslam R, Davidson G, et al. Development of pharyngo-esophageal physiology during swallowing in the preterm infant. Neurogastroenterol Motil. 2011;23:e401–e408408.

    Article  CAS  PubMed  Google Scholar 

  15. Lau C. Development of suck and swallow mechanisms in infants. Ann Nutr Metab. 2015;66:7–14.

    Article  CAS  PubMed  Google Scholar 

  16. Mayerl CJ, Gould FDH, Bond LE, Stricklen BM, Buddington RK, German RZ. Preterm birth disrupts the development of feeding and breathing coordination. J Appl Physiol. 2019;126:1681–6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rasch S, Sangild PT, Gregersen H, Schmidt M, Omari T, Lau C. The preterm piglet: a model in the study of oesophageal development in preterm neonates. Acta Paediatr. 2010;99:201–8.

    CAS  PubMed  Google Scholar 

  18. Staiano A, Boccia G, Salvia G, Zappulli D, Clouse RE. Development of esophageal peristalsis in preterm and term neonates. Gastroenterology. 2007;132:1718–25.

    Article  PubMed  Google Scholar 

  19. Prabhakar V, Hasenstab KA, Osborn E, Wei L, Jadcherla SR. Pharyngeal contractile and regulatory characteristics are distinct during nutritive oral stimulus in preterm-born infants: Implications for clinical and research applications. Neurogastroenterol Motil. 2019;31:E13650.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Jadcherla SR, Shubert TR, Gulati IK, Jensen PS, Wei L, Shaker R. Upper and lower esophageal sphincter kinetics are modified during maturation: effect of pharyngeal stimulus in premature infants. Pediatr Res. 2015;77:99–106.

    Article  PubMed  Google Scholar 

  21. Flamand VH, Nadeau L, Schneider C. Brain motor excitability and visuomotor coordination in 8-year-old children born very preterm. Clin Neurophysiol. 2012;123:1191–9.

    Article  PubMed  Google Scholar 

  22. Pitcher JB, Schneider LA, Burns NR, Drysdale JL, Higgins RD, Ridding MC, et al. Reduced corticomotor excitability and motor skills development in children born preterm. J Physiol. 2012;590:5827–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pitcher JB, Riley AM, Doeltgen SH, Kurylowicz L, Rothwell JC, McAllister SM, et al. Physiological evidence consistent with reduced neuroplasticity in human adolescents born preterm. J Neurosci. 2012;32:1640–16416.

    Google Scholar 

  24. Oudgenoeg-Paz O, Mulder H, Jongmans MJ, van der Ham IJM, Van der Stigchel S. The link between motor and cognitive development in children born preterm and/or with low birth weight: a review of current evidence. Neurosci Biobehav Rev. 2017;80:382–93. https://doi.org/10.1016/j.neubiorev.2017.06.009.

    Article  PubMed  Google Scholar 

  25. Benjamin JR, Smith PBS, Cotten CM, Jaggers J, Goldstein RF, Malcom WF. Long-term morbidities associated with vocal cord paralysis after surgical closure of a patent ductus arteriosus in extremely low birth weight infants. J Perinatol. 2010;30:408–13.

    Article  CAS  PubMed  Google Scholar 

  26. Pereira KD, Firpo C, Gasparin M, Teixeira AR, Dornelles S, Bacaltchuk T, et al. Evaluation of swallowing in infants with congenital heart defect. Int Arch Otorhinolaryngol. 2015;19:55–60. https://doi.org/10.1055/s-0034-1384687.

    Article  Google Scholar 

  27. Pereira KD, Webb BD, Blakely ML, Cox CS, Lally KP. Sequelae of recurrent laryngeal nerve injury after patent ductus arteriosus ligation. Int J Pediatr Otorhinolaryngol. 2006;70:1609–12.

    Article  PubMed  Google Scholar 

  28. Nichols BG, Jabbour J, Hehir DA, Ghanayem NS, Beste D, Martin T, et al. Recovery of vocal fold immobility following isolated patent ductus arteriosus ligation. Int J Pediatr Otorhinolaryngol. 2014;78:1316–9.

    Article  PubMed  Google Scholar 

  29. DeLozier KR, Gould FDH, Ohlemacher J, Thexton AJ, German RZ. The impact of recurrent laryngeal nerve lesion on oropharyngeal muscle activity and sensorimotor integration in an infant pig model. J Appl Physiol. 2018;125:159–66.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gould FDH, Ohlemacher J, Lammers AR, Gross A, Ballester A, Fraley L, et al. Central nervous system integration of sensorimotor signals in oral and pharyngeal structures: oropharyngeal kinematics response to recurrent laryngeal nerve lesion. J Appl Physiol. 2016;120:495–502.

    Article  CAS  PubMed  Google Scholar 

  31. Gould FDH, Lammers AR, Mayerl CJ, German RZ. Specific vagus nerve lesion have distinctive physiologic mechanisms of dysphagia. Fontiers Neurol. 2019;10:1301.

    Google Scholar 

  32. Lau C, Alagugurusamy R, Schanler RJ, Smith EO, Shulman RJ. Characterization of the developmental stages of sucking in preterm infants during bottle feeding. Acta Paediatr. 2000;89:846–52.

    Article  CAS  PubMed  Google Scholar 

  33. Ballester A, Gould FDH, Bond L, Stricklen B, Ohlemacher J, Gross A, et al. Maturation of the coordination between respiration and deglutition with and without recurrent laryngeal nerve lesion in an animal model. Dysphagia. 2018;33:627–35. https://doi.org/10.1007/s00455-018-9881-z.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mayerl CJ, Myrla AM, Bond LE, Stricklen BM, German RZ, Gould FDH. Premature birth impacts bolus size and shape through nursing in infant pigs. Pediatr Res. 2020;87:656–61.

    Article  PubMed  Google Scholar 

  35. Jadcherla S. Dysphagia in the high-risk infant: Potential factors and mechanisms. Am J Clin Nutr. 2016;103:622S–8S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Henderson M, Miles A, Holgate V, Peryman S, Allen J. Application and verification of quantitative objective videofluoroscopic swallowing measures in a pediatric population with dysphagia. J Pediatr. 2016;178:200–5. https://doi.org/10.1016/j.jpeds.2016.07.050.

    Article  PubMed  Google Scholar 

  37. Ongkasuwan J, Chiou EH. In: Ongkasuwan J, Chiou EH, editors. Pediatric dysphagia: Challenges and controversies. Cham: Springer; 2018.

    Chapter  Google Scholar 

  38. Gleeson K, Eggli DF, Maxwell SL. Quantitative aspiration during sleep in normal subjects. Chest. 1997;111:1266–72. https://doi.org/10.1378/chest.111.5.1266.

    Article  CAS  PubMed  Google Scholar 

  39. Catchpole E, Bond L, German R, Mayerl C, Stricklen B, Gould FDH. Reduced coordination of hyolaryngeal elevation and bolus movement in a pig model of preterm infant swallowing. Dysphagia. 2019. https://doi.org/10.1007/s00455-019-10033-w.

    Article  PubMed  PubMed Central  Google Scholar 

  40. German RZ, Crompton AW, Gould FDH, Thexton AJ. Animal models for dysphagia studies: what have we learnt so far. Dysphagia. 2017;32:73–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Eiby YA, Wright LL, Kalanjati VP, Miller SM, Bjorkman ST, Keates HL, et al. A pig model of the preterm neonate: anthropometric and physiological characteristics. PLoS ONE. 2013;8:e68763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. German RZ, Crompton AW, Thexton AJ. The coordination and interaction between respiration and deglutition in young pigs. J Comp Physiol. 1998;182:539–47.

    Article  CAS  Google Scholar 

  43. German RZ, Crompton AW, Thexton AJ. Integration of the reflex pharyngeal swallow into rhythmic oral activity in a neurologically intact pig model. J Neurophysiol. 2009;102:1017–25.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Thexton AJ, Crompton AW, German RZ. Transition from suckling to drinking at weaning: a kinematic and electromyographic study in miniature pigs. J Exp Zool. 1998;280:327–43.

    Article  CAS  PubMed  Google Scholar 

  45. Gierbolini-Norat EM, Holman SD, Ding P, Bakshi S, German RZ. Variation in the Timing and Frequency of Sucking and Swallowing over an Entire Feeding Session in the Infant Pig Sus scrofa. Dysphagia. 2014;29:1–8.

    Article  Google Scholar 

  46. Holman SD, Campbell-Malone R, Ding P, Gierbolini-Norat EM, Griffioen AM, Inokuchi H, et al. Development, reliability, and validation of an infant mammalian penetration-aspiration scale. Dysphagia. 2013;28:178–87.

    Article  PubMed  Google Scholar 

  47. Rosenbek JC, Robbins JA, Roecker EB, Coyle JL, Wood JL. A penetration-aspiration scale. Dysphagia. 1996;11:93–8.

    Article  CAS  PubMed  Google Scholar 

  48. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ding P, Fung GS, Lin M, Holman SD, German RZ. The effect of bilateral superior laryngeal nerve lesion on swallowing: a novel method to quantitate aspirated volume and pharyngeal threshold in videofluoroscopy. Dysphagia. 2015;30:47–56.

    Article  PubMed  Google Scholar 

  50. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.

    Article  Google Scholar 

  51. Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. Amsterdam: Elsevier; 2002.

    Google Scholar 

  52. Lau C, Smith EO, Schanler RJ. Coordination of suck-swallow and swallow respiration in preterm infants. Acta Paediatr. 2003;92:721–7.

    Article  CAS  PubMed  Google Scholar 

  53. Gewolb IH, Vice FL, Schweitzer-Kenney EL, Taciak VL, Bosma JF. Developmental patterns of rhythmic suck and swallow in preterm infants. Dev Med Child Neurol. 2001;43:22–7.

    Article  CAS  PubMed  Google Scholar 

  54. Prasse JE, Kikano GE. An overview of pediatric dysphagia. Clin Pediatr (Phila). 2009;48:247–51.

    Article  Google Scholar 

  55. Gross A, Ohlemacher J, German RZ, Gould FDH. LVC timing in infant pig swallowing and the effect of safe swallowing. Dysphagia. 2018;33:51–62.

    Article  PubMed  Google Scholar 

  56. Steele CM, Miller AJ. Sensory input pathways and mechanisms in swallowing: a review. Dysphagia. 2010;25:323–33.

    Article  PubMed  PubMed Central  Google Scholar 

  57. McGrattan KE, McFarland DH, Dean JC, Hill E, White DR, Martin-Harris B. Effect of single-use, laser-cut, slow-flow nipples on respiration and milk ingestion in preterm infants. Am J Speech-Language Pathol. 2017;26:832–9.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank C. Tennant and E. Catchpole for their assistance with data collection and animal care, Claire Lewis, Katlyn McGrattan and Kayla Hernandez for assistance with animal care, and the Biomechanics journal club at NEOMED for their helpful comments on an earlier version of this manuscript.

Funding

This project was funded by NIH R01 HD088561 to R.Z.G.

Author information

Authors and Affiliations

Authors

Contributions

Study Design: CJM, FDHG, RZG. Data collection: All authors Data processing: CJM and AMM. Data analysis: CJM Wrote Manuscript: CJM and AMM Edited manuscript: RZG and FDHG, Approved manuscript for publication: all authors.

Corresponding author

Correspondence to Christopher J. Mayerl.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 460 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayerl, C.J., Myrla, A.M., Gould, F.D.H. et al. Swallow Safety is Determined by Bolus Volume During Infant Feeding in an Animal Model. Dysphagia 36, 120–129 (2021). https://doi.org/10.1007/s00455-020-10118-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-020-10118-x

Keywords

Navigation