Advertisement

Dysphagia

pp 1–18 | Cite as

The Influence of Age, Sex, Visual Feedback, Bulb Position, and the Order of Testing on Maximum Anterior and Posterior Tongue Strength in Healthy Belgian Children

  • Jan Vanderwegen
  • Gwen Van Nuffelen
  • Rik Elen
  • Marc De Bodt
Original Article
  • 21 Downloads

Abstract

Tongue strength and its role in the pathophysiology of dysphagia in adults are well accepted and studied. An objective and reliable measurement of tongue strength in children necessitates equally good methodology, knowledge of influencing factors, and normative data. Only limited data on testing tongue strength in children are available thereby limiting its potential use. The present study examined tongue strength and several parameters known to be important in adults in the largest sample of healthy children from 3 to 11 years old to date using the Iowa Oral Performance Instrument with standard bulbs. Tongue strength increases markedly for children between 6 and 7 years, with slower increases before and after this age. Unlike adults, no influence of sex or location was found on the maximum tongue strength in children, and visual feedback was found to be counterproductive in obtaining the highest tongue pressures. The normative data obtained can be used for objective assessment of tongue weakness and subsequent therapy planning in dysphagic children.

Keywords

Tongue Strength assessment Children Age-related changes Deglutition Deglutition disorders 

Notes

Acknowledgements

The authors wish to thank Ellen De Keersmaecker and Janne Fret for their invaluable help in collecting the data.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Arvedson JC. Assessment of pediatric dysphagia and feeding disorders: clinical and instrumental approaches. Dev Disabil Res Rev. 2008;14(2):118–27.  https://doi.org/10.1002/ddrr.17.CrossRefGoogle Scholar
  2. 2.
    McConnel FM. Analysis of pressure generation and bolus transit during pharyngeal swallowing. Laryngoscope. 1988;98(1):71–8.  https://doi.org/10.1288/00005537-198801000-00015.CrossRefGoogle Scholar
  3. 3.
    Dodds WJ. Physiology of swallowing. Dysphagia. 1989;3(4):171–8.CrossRefGoogle Scholar
  4. 4.
    Stierwalt JA, Youmans SR. Tongue measures in individuals with normal and impaired swallowing. Am J Speech Lang Pathol. 2007;16(2):148–56.  https://doi.org/10.1044/1058-0360(2007/019).CrossRefGoogle Scholar
  5. 5.
    Clark HM, Henson PA, Barber WD, Stierwalt JA, Sherrill M. Relationships among subjective and objective measures of tongue strength and oral phase swallowing impairments. Am J Speech Lang Pathol. 2003;12(1):40–50.  https://doi.org/10.1044/1058-0360(2003/051).CrossRefGoogle Scholar
  6. 6.
    Yoshida M, Kikutani T, Tsuga K, Utanohara Y, Hayashi R, Akagawa Y. Decreased tongue pressure reflects symptom of dysphagia. Dysphagia. 2006;21(1):61–5.  https://doi.org/10.1007/s00455-005-9011-6.CrossRefGoogle Scholar
  7. 7.
    Cooper-Brown L, Copeland S, Dailey S, Downey D, Petersen MC, Stimson C, Van Dyke DC. Feeding and swallowing dysfunction in genetic syndromes. Dev Disabil Res Rev. 2008;14(2):147–57.  https://doi.org/10.1002/ddrr.19.CrossRefGoogle Scholar
  8. 8.
    Robin DG, Somodi LB, Luschei ES. Measurement of tongue strength, endurance in normal and articulation disordered subjects. In: Moore CA, Yorkston KM, Beukelman DR, editors. Dysarthria and apraxia of speech: perspectives on management. Baltimore: P.H. Brookes Publ. Co.; 1991. p. 173–84.Google Scholar
  9. 9.
    Lefton-Greif MA, Arvedson JC. Pediatric feeding/swallowing: yesterday, today, and tomorrow. Semin Speech Lang. 2016;37(4):298–309.  https://doi.org/10.1055/s-0036-1587702.CrossRefGoogle Scholar
  10. 10.
    Frazier JB. Effect of tactile stimulation on lingual motor function in pediatric lingual dysphagia. Dysphagia 2007;22(4):340–2; author reply 343–52.  https://doi.org/10.1007/s00455-007-9106-3.
  11. 11.
    Rogers B, Arvedson J. Assessment of infant oral sensorimotor and swallowing function. Ment Retard Dev Disabil Res Rev. 2005;11(1):74–82.  https://doi.org/10.1002/mrdd.20055.CrossRefGoogle Scholar
  12. 12.
    Potter NL, Short R. Maximal tongue strength in typically developing children and adolescents. Dysphagia. 2009;24(4):391–7.  https://doi.org/10.1007/s00455-009-9215-2.CrossRefGoogle Scholar
  13. 13.
    Vanderwegen J, Guns C, Van Nuffelen G, Elen R, De Bodt M. The influence of age, sex, bulb position, visual feedback, and the order of testing on maximum anterior and posterior tongue strength and endurance in healthy Belgian adults. Dysphagia. 2013;28(2):159–66.  https://doi.org/10.1007/s00455-012-9425-x.CrossRefGoogle Scholar
  14. 14.
    Youmans SR, Youmans GL, Stierwalt JA. Differences in tongue strength across age and gender: is there a diminished strength reserve? Dysphagia. 2009;24(1):57–65.  https://doi.org/10.1007/s00455-008-9171-2.CrossRefGoogle Scholar
  15. 15.
    McConnel FM, Cerenko D, Mendelsohn MS. Manofluorographic analysis of swallowing. Otolaryngol Clin N Am. 1988;21(4):625–35.Google Scholar
  16. 16.
    Bradford A, Murdoch B, Thompson E, Stokes P. Lip and tongue function in children with developmental speech disorders: a preliminary investigation. Clin Linguist Phon. 1997;11(5):363–87.  https://doi.org/10.1080/02699209708985201.CrossRefGoogle Scholar
  17. 17.
    Murdoch BE, Attard MD, Ozanne AE, Stokes PD. Impaired tongue strength and endurance in developmental verbal dyspraxia: a physiological analysis. Eur J Disord Commun. 1995;30(1):51–64.CrossRefGoogle Scholar
  18. 18.
    Sakaue K, Fukui T, Sasakura C, Hori K, Ono T, Saito I. Tongue pressure production during swallowing in patients with mandibular prognathism. J Oral Rehabil. 2016;43(5):348–55.  https://doi.org/10.1111/joor.12379.CrossRefGoogle Scholar
  19. 19.
    Pitts LL, Stierwalt JAG, Hageman CF, LaPointe LL. The influence of oropalatal dimensions on the measurement of tongue strength. Dysphagia. 2017;32(6):759–66.  https://doi.org/10.1007/s00455-017-9820-4.CrossRefGoogle Scholar
  20. 20.
    Clark HM, Solomon NP. Age and sex differences in orofacial strength. Dysphagia. 2012;27(1):2–9.  https://doi.org/10.1007/s00455-011-9328-2.CrossRefGoogle Scholar
  21. 21.
    Crow HC, Ship JA. Tongue strength and endurance in different aged individuals. J Gerontol A. 1996;51(5):M247–50.CrossRefGoogle Scholar
  22. 22.
    Gingrich LL, Stierwalt JA, Hageman CF, LaPointe LL. Lingual propulsive pressures across consistencies generated by the anteromedian and posteromedian tongue by healthy young adults. J Speech Lang Hear Res. 2012;55(3):960–72.  https://doi.org/10.1044/1092-4388(2011/10-0357).CrossRefGoogle Scholar
  23. 23.
    Robbins J, Levine R, Wood J, Roecker EB, Luschei E. Age effects on lingual pressure generation as a risk factor for dysphagia. J Gerontol A. 1995;50(5):M257–62.CrossRefGoogle Scholar
  24. 24.
    Robin DA, Goel A, Somodi LB, Luschei ES. Tongue strength and endurance: relation to highly skilled movements. J Speech Hear Res. 1992;35(6):1239–45.CrossRefGoogle Scholar
  25. 25.
    Adams V, Mathisen B, Baines S, Lazarus C, Callister R. Reliability of measurements of tongue and hand strength and endurance using the Iowa Oral Performance Instrument with healthy adults. Dysphagia. 2014;29(1):83–95.  https://doi.org/10.1007/s00455-013-9486-5.CrossRefGoogle Scholar
  26. 26.
    Solomon NP, Munson B. The effect of jaw position on measures of tongue strength and endurance. J Speech Lang Hear Res. 2004;47(3):584–94.  https://doi.org/10.1044/1092-4388(2004/045).CrossRefGoogle Scholar
  27. 27.
    Utanohara Y, Hayashi R, Yoshikawa M, Yoshida M, Tsuga K, Akagawa Y. Standard values of maximum tongue pressure taken using newly developed disposable tongue pressure measurement device. Dysphagia. 2008;23(3):286–90.  https://doi.org/10.1007/s00455-007-9142-z.CrossRefGoogle Scholar
  28. 28.
    Geary DC, vanMarle K, Chu FW, Rouder J, Hoard MK, Nugent L. Early conceptual understanding of cardinality predicts superior school-entry number-system knowledge. Psychological Science. 2018;29(2):191–205.  https://doi.org/10.1177/0956797617729817.CrossRefGoogle Scholar
  29. 29.
    Desoete A, Vanderswalmen R, De Bondt A, Van Vreckem C, Van Vooren V, Vander Beken I, Van Dycke S, Baert J. Dyscalculie. Dyscalculie. Gent: Academia; 2015. p. 96–106.Google Scholar
  30. 30.
    Haesaert V, Desoete A. Welke tests gebruikt men bij de diagnose van dyscalculie en waarom?. Ghent: Ghent University; 2011.Google Scholar
  31. 31.
    Desoete A, Ceulemans A, De Weerdt F, Pieters S. Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study. Br J Educ Psychol. 2012;82(Pt 1):64–81.  https://doi.org/10.1348/2044-8279.002002.CrossRefGoogle Scholar
  32. 32.
    Vorperian HK, Kent RD, Lindstrom MJ, Kalina CM, Gentry LR, Yandell BS. Development of vocal tract length during early childhood: a magnetic resonance imaging study. J Acoust Soc Am. 2005;117(1):338–50.CrossRefGoogle Scholar
  33. 33.
    Kays SA, Hind JA, Gangnon RE, Robbins J. Effects of dining on tongue endurance and swallowing-related outcomes. J Speech Lang Hear Res. 2010;53(4):898–907.  https://doi.org/10.1044/1092-4388(2009/09-0048).CrossRefGoogle Scholar
  34. 34.
    Palmer PM, Neel AT, Sprouls G, Morrison L. Swallow characteristics in patients with oculopharyngeal muscular dystrophy. J Speech Lang Hear Res. 2010;53(6):1567–78.  https://doi.org/10.1044/1092-4388(2010/09-0068).CrossRefGoogle Scholar
  35. 35.
    Van den Steen L, Schellen C, Verstraelen K, Beeckman AS, Vanderwegen J, De Bodt M, Van Nuffelen G. Tongue-strengthening exercises in healthy older adults: specificity of bulb position and detraining effects. Dysphagia. 2018;33(3):337–44.  https://doi.org/10.1007/s00455-017-9858-3.CrossRefGoogle Scholar
  36. 36.
    Mair P, Schoenbrodt F, Wilcox RR. WRS2: Wilcox robust estimation and testing. R package version (Version 0.4-0), 2015.Google Scholar
  37. 37.
    Wilcox RR. Introduction to robust estimation and hypothesis testing. 4th ed. Burlington: Elsevier; 2016.Google Scholar
  38. 38.
    Yuen KK. The two-sample trimmed t for unequal population variances. Biometrika. 1974;61(1):165–70.  https://doi.org/10.1093/biomet/61.1.165.CrossRefGoogle Scholar
  39. 39.
    Eken MM, Dallmeijer AJ, Houdijk H, Doorenbosch CA. Muscle fatigue during repetitive voluntary contractions: a comparison between children with cerebral palsy, typically developing children and young healthy adults. Gait Posture. 2013;38(4):962–7.  https://doi.org/10.1016/j.gaitpost.2013.05.004.CrossRefGoogle Scholar
  40. 40.
    Eken MM, Harlaar J, Dallmeijer AJ, de Waard E, van Bennekom CA, Houdijk H. Squat test performance and execution in children with and without cerebral palsy. Clin Biomech (Bristol Avon). 2017;41:98–105.  https://doi.org/10.1016/j.clinbiomech.2016.12.006.CrossRefGoogle Scholar
  41. 41.
    Wind AE, Takken T, Helders PJ, Engelbert RH. Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults? Eur J Pediatr. 2010;169(3):281–7.  https://doi.org/10.1007/s00431-009-1010-4.CrossRefGoogle Scholar
  42. 42.
    Macfarlane TS, Larson CA, Stiller C. Lower extremity muscle strength in 6- to 8-year-old children using hand-held dynamometry. Pediatr Phys Ther. 2008;20(2):128–36.  https://doi.org/10.1097/pep.0b013e318172432d.CrossRefGoogle Scholar
  43. 43.
    Latorre Roman PA, Moreno Del Castillo R, Lucena Zurita M, Salas Sanchez J, Garcia-Pinillos F, Mora Lopez D. Physical fitness in preschool children: association with sex, age and weight status. Child Care Health Dev. 2017;43(2):267–73.  https://doi.org/10.1111/cch.12404.CrossRefGoogle Scholar
  44. 44.
    Grund A, Dilba B, Forberger K, Krause H, Siewers M, Rieckert H, Muller MJ. Relationships between physical activity, physical fitness, muscle strength and nutritional state in 5- to 11-year-old children. Eur J Appl Physiol. 2000;82(5–6):425–38.  https://doi.org/10.1007/s004210000197.CrossRefGoogle Scholar
  45. 45.
    Tambalis KD, Panagiotakos DB, Arnaoutis G, Sidossis LS. Endurance, explosive power, and muscle strength in relation to body mass index and physical fitness in Greek children aged 7–10 years. Pediatr Exerc Sci. 2013;25(3):394–406.CrossRefGoogle Scholar
  46. 46.
    Golle K, Muehlbauer T, Wick D, Granacher U. Physical fitness percentiles of German children aged 9–12 years: findings from a longitudinal study. PLoS ONE. 2015;10(11):e0142393.  https://doi.org/10.1371/journal.pone.0142393.CrossRefGoogle Scholar
  47. 47.
    Geary DC, Hoard MK, Byrd-Craven J, DeSoto MC. Strategy choices in simple and complex addition: contributions of working memory and counting knowledge for children with mathematical disability. J Exp Child Psychol. 2004;88(2):121–51.  https://doi.org/10.1016/j.jecp.2004.03.002.CrossRefGoogle Scholar
  48. 48.
    Geary DC, Bailey DH, Littlefield A, Wood P, Hoard MK, Nugent L. First-grade predictors of mathematical learning disability: a latent class trajectory analysis. Cogn Dev. 2009.  https://doi.org/10.1016/j.cogdev.2009.10.001.Google Scholar
  49. 49.
    Rips LJ, Bloomfield A, Asmuth J. From numerical concepts to concepts of number. Behav Brain Sci. 2008;31(6):623–42; discussion 642–87.  https://doi.org/10.1017/s0140525x08005566.
  50. 50.
    Cantlon JF, Libertus ME, Pinel P, Dehaene S, Brannon EM, Pelphrey KA. The neural development of an abstract concept of number. J Cogn Neurosci. 2009;21(11):2217–29.  https://doi.org/10.1162/jocn.2008.21159.CrossRefGoogle Scholar
  51. 51.
    Toumi A, Jakobi JM, Simoneau-Buessinger E. Differential impact of visual feedback on plantar- and dorsi-flexion maximal torque output. Appl Physiol Nutr Metab. 2016; 41(5):557–9.  https://doi.org/10.1139/apnm-2015-0639.CrossRefGoogle Scholar
  52. 52.
    Chin LC, Zakaria E. Understanding of number concepts and number operations through games in early mathematics education. Creat Educ. 2015;06(12):1306–15.  https://doi.org/10.4236/ce.2015.612130.CrossRefGoogle Scholar
  53. 53.
    Athreya DN, Van Orden G, Riley MA. Feedback about isometric force production yields more random variations. Neurosci Lett. 2012;513(1):37–41.  https://doi.org/10.1016/j.neulet.2012.02.002.CrossRefGoogle Scholar
  54. 54.
    Argus CK, Gill ND, Keogh JW, Hopkins WG. Acute effects of verbal feedback on upper-body performance in elite athletes. J Strength Cond Res. 2011;25(12):3282–7.  https://doi.org/10.1519/jsc.0b013e3182133b8c.CrossRefGoogle Scholar
  55. 55.
    Jung M-C, Hallbeck MS. Quantification of the effects of instruction type, verbal encouragement, and visual feedback on static and peak handgrip strength. Int J Ind Ergon. 2004;34(5):367–74.  https://doi.org/10.1016/j.ergon.2004.03.008.CrossRefGoogle Scholar
  56. 56.
    Kim HJ, Kramer JF. Effectiveness of visual feedback during isokinetic exercise. J Orthop Sports Phys Ther. 1997;26(6):318–23.  https://doi.org/10.2519/jospt.1997.26.6.318.CrossRefGoogle Scholar
  57. 57.
    McNair PJ, Depledge J, Brettkelly M, Stanley SN. Verbal encouragement: effects on maximum effort voluntary muscle action. Br J Sports Med. 1996;30(3):243–5.CrossRefGoogle Scholar
  58. 58.
    Tod DA, Iredale KF, McGuigan MR, Strange DE, Gill N. “Psyching-up” enhances force production during the bench press exercise. J Strength Cond Res. 2005;19(3):599–603.  https://doi.org/10.1519/14263.1.Google Scholar
  59. 59.
    Wulf G, Shea C, Lewthwaite R. Motor skill learning and performance: a review of influential factors. Med Educ. 2010;44(1):75–84.  https://doi.org/10.1111/j.1365-2923.2009.03421.x.CrossRefGoogle Scholar
  60. 60.
    Kothari M, Svensson P, Huo X, Ghovanloo M, Baad-Hansen L. Motivational conditions influence tongue motor performance. Eur J Oral Sci. 2013;121(2):111–6.  https://doi.org/10.1111/eos.12022.CrossRefGoogle Scholar
  61. 61.
    Kothari M, Svensson P, Huo X, Ghovanloo M, Baad-Hansen L. Force and complexity of tongue task training influences behavioral measures of motor learning. Eur J Oral Sci. 2012;120(1):46–53.  https://doi.org/10.1111/j.1600-0722.2011.00894.x.CrossRefGoogle Scholar
  62. 62.
    Nicosia MA, Hind JA, Roecker EB, Carnes M, Doyle J, Dengel GA, Robbins J. Age effects on the temporal evolution of isometric and swallowing pressure. J Gerontol A. 2000;55(11):M634–40.CrossRefGoogle Scholar
  63. 63.
    Vorperian HK, Wang S, Chung MK, Schimek EM, Durtschi RB, Kent RD, Ziegert AJ, Gentry LR. Anatomic development of the oral and pharyngeal portions of the vocal tract: an imaging study. J Acoust Soc Am. 2009;125(3):1666–78.  https://doi.org/10.1121/1.3075589.CrossRefGoogle Scholar
  64. 64.
    Cheng HY, Murdoch BE, Goozee JV, Scott D. Electropalatographic assessment of tongue-to-palate contact patterns and variability in children, adolescents, and adults. J Speech Lang Hear Res. 2007;50(2):375–92.  https://doi.org/10.1044/1092-4388(2007/027).CrossRefGoogle Scholar
  65. 65.
    Green JR, Wang YT. Tongue-surface movement patterns during speech and swallowing. J Acoust Soc Am. 2003;113(5):2820–33.CrossRefGoogle Scholar
  66. 66.
    Hiiemae KM, Palmer JB. Tongue movements in feeding and speech. Crit Rev Oral Biol Med. 2003;14(6):413–29.  https://doi.org/10.1177/154411130301400604.CrossRefGoogle Scholar
  67. 67.
    Goozee J, Murdoch B, Ozanne A, Cheng Y, Hill A, Gibbon F. Lingual kinematics and coordination in speech-disordered children exhibiting differentiated versus undifferentiated lingual gestures. Int J Lang Commun Disord. 2007;42(6):703–24.  https://doi.org/10.1080/13682820601104960.CrossRefGoogle Scholar
  68. 68.
    Durtschi RB, Chung D, Gentry LR, Chung MK, Vorperian HK. Developmental craniofacial anthropometry: assessment of race effects. Clin Anat. 2009;22(7):800–8.  https://doi.org/10.1002/ca.20852.CrossRefGoogle Scholar
  69. 69.
    Xue SA, Hao JG. Normative standards for vocal tract dimensions by race as measured by acoustic pharyngometry. J Voice. 2006;20(3):391–400.  https://doi.org/10.1016/j.jvoice.2005.05.001.CrossRefGoogle Scholar
  70. 70.
    Goracci C, Franchi L, Vichi A, Ferrari M. Accuracy, reliability, and efficiency of intraoral scanners for full-arch impressions: a systematic review of the clinical evidence. Eur J Orthod. 2016;38(4):422–8.  https://doi.org/10.1093/ejo/cjv077.CrossRefGoogle Scholar
  71. 71.
    Chalmers EV, McIntyre GT, Wang W, Gillgrass T, Martin CB, Mossey PA. Intraoral 3D scanning or dental impressions for the assessment of dental arch relationships in cleft care: which is superior? Cleft Palate Craniofac J Off Publ Am Cleft Palate Craniofac Assoc. 2016;53(5):568–77.  https://doi.org/10.1597/15-036.CrossRefGoogle Scholar
  72. 72.
    Hudspeth MP, Holden KR, Crawford TO. The “slurp” test: bedside evaluation of bulbar muscle fatigue. Pediatrics. 2006;118(2):e530–3.  https://doi.org/10.1542/peds.2006-0043.CrossRefGoogle Scholar
  73. 73.
    Arvedson J, Clark H, Lazarus C, Schooling T, Frymark T. The effects of oral-motor exercises on swallowing in children: an evidence-based systematic review. Dev Med Child Neurol. 2010;52(11):1000–13.  https://doi.org/10.1111/j.1469-8749.2010.03707.x.CrossRefGoogle Scholar
  74. 74.
    Arvedson JC, Lefton-Greif MA. Instrumental assessment of pediatric dysphagia. Semin Speech Lang. 2017;38(2):135–46.  https://doi.org/10.1055/s-0037-1599111.CrossRefGoogle Scholar
  75. 75.
    van den Engel-Hoek L, Erasmus CE, Hendriks JC, Geurts AC, Klein WM, Pillen S, Sie LT, de Swart BJ, de Groot IJ. Oral muscles are progressively affected in Duchenne muscular dystrophy: implications for dysphagia treatment. J Neurol. 2013;260(5):1295–303.  https://doi.org/10.1007/s00415-012-6793-y.CrossRefGoogle Scholar
  76. 76.
    Malek R. Cleft lip and palate, lesions, pathophysiology and primary treatment. London: Martin Dunitz; 2001.Google Scholar
  77. 77.
    Van Lierde KM, Bettens K, Luyten A, Plettinck J, Bonte K, Vermeersch H, Roche N. Oral strength in subjects with a unilateral cleft lip and palate. Int J Pediatr Otorhinolaryngol. 2014;78(8):1306–10.  https://doi.org/10.1016/j.ijporl.2014.05.017.CrossRefGoogle Scholar
  78. 78.
    Villa MP, Evangelisti M, Martella S, Barreto M, Del Pozzo M (2017) Can myofunctional therapy increase tongue tone and reduce symptoms in children with sleep-disordered breathing? Sleep Breath. 2017;21(4):1025–32.  https://doi.org/10.1007/s11325-017-1489-2.CrossRefGoogle Scholar
  79. 79.
    de Felicio CM, da Silva Dias FV, Folha GA, de Almeida LA, de Souza JF, Anselmo-Lima WT, Trawitzki LV, Valera FC. Orofacial motor functions in pediatric obstructive sleep apnea and implications for myofunctional therapy. Int J Pediatr Otorhinolaryngol. 2016;90:5–11.  https://doi.org/10.1016/j.ijporl.2016.08.019.CrossRefGoogle Scholar
  80. 80.
    Van Dyck C, Dekeyser A, Vantricht E, Manders E, Goeleven A, Fieuws S, Willems G. The effect of orofacial myofunctional treatment in children with anterior open bite and tongue dysfunction: a pilot study. Eur J Orthod. 2016;38(3):227–34.  https://doi.org/10.1093/ejo/cjv044.CrossRefGoogle Scholar
  81. 81.
    Verma RK, Johnson JJ, Goyal M, Banumathy N, Goswami U, Panda NK. Oropharyngeal exercises in the treatment of obstructive sleep apnoea: our experience. Sleep Breath. 2016;20(4):1193–201.  https://doi.org/10.1007/s11325-016-1332-1.CrossRefGoogle Scholar
  82. 82.
    Regalo SCH, de Lima Lucas B, Diaz-Serrano KV, Frota NPR, Regalo IH, Nassar MSP, Righetti MA, Oliveira LF, Goncalves LMN, Siessere S, Palinkas M. Analysis of the stomatognathic system of children according orthodontic treatment needs. J Orofac Orthop  Organ/Off J Dtsch Ges Kieferorthop. 2018;79(1):39–47.  https://doi.org/10.1007/s00056-017-0117-x.CrossRefGoogle Scholar
  83. 83.
    Partal I, Aksu M. Changes in lips, cheeks and tongue pressures after upper incisor protrusion in Class II division 2 malocclusion: a prospective study. Prog Orthod. 2017;18(1):29.  https://doi.org/10.1186/s40510-017-0182-0.CrossRefGoogle Scholar
  84. 84.
    da Silva JB, Giglio LD, Regalo SH, de Mello-Filho FV, Trawitzki LV. Effect of dentofacial deformity on maximum isometric tongue strength. J Oral Rehabil. 2013;40(4):247–51.  https://doi.org/10.1111/joor.12020.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Speech-Pathology and AudiologyThomas More University College of Applied SciencesAntwerpBelgium
  2. 2.Department of OtorhinolaryngologyUMC Saint-PierreBrusselsBelgium
  3. 3.Department of Otolaryngology and Head & Neck Surgery-Rehabilitation Center for Communication DisordersAntwerp University HospitalAntwerpBelgium
  4. 4.Faculty of Speech-Pathology and AudiologyGhent UniversityGhentBelgium
  5. 5.Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium

Personalised recommendations