Advertisement

Dysphagia

, Volume 30, Issue 3, pp 328–342 | Cite as

Videofluoroscopic Validation of a Translational Murine Model of Presbyphagia

  • Teresa E. LeverEmail author
  • Ryan T. Brooks
  • Lori A. Thombs
  • Loren L. Littrell
  • Rebecca A. Harris
  • Mitchell J. Allen
  • Matan D. Kadosh
  • Kate L. Robbins
Original Article

Abstract

Presbyphagia affects approximately 40 % of otherwise healthy people over 60 years of age. Hence, it is a condition of primary aging rather than a consequence of primary disease. This distinction warrants systematic investigations to understand the causal mechanisms of aging versus disease specifically on the structure and function of the swallowing mechanism. Toward this goal, we have been studying healthy aging C57BL/6 mice (also called B6), the most popular laboratory rodent for biomedical research. The goal of this study was to validate this strain as a model of presbyphagia for translational research purposes. We tested two age groups of B6 mice: young (4–7 months; n = 16) and old (18–21 months; n = 11). Mice underwent a freely behaving videofluoroscopic swallow study (VFSS) protocol developed in our lab. VFSS videos (recorded at 30 frames per second) were analyzed frame-by-frame to quantify 15 swallow metrics. Six of the 15 swallow metrics were significantly different between young and old mice. Compared to young mice, old mice had significantly longer pharyngeal and esophageal transit times (p = 0.038 and p = 0.022, respectively), swallowed larger boluses (p = 0.032), and had a significantly higher percentage of ineffective primary esophageal swallows (p = 0.0405). In addition, lick rate was significantly slower for old mice, measured using tongue cycle rate (p = 0.0034) and jaw cycle rate (p = 0.0020). This study provides novel evidence that otherwise healthy aging B6 mice indeed develop age-related changes in swallow function resembling presbyphagia in humans. Specifically, aging B6 mice have a generally slow swallow that spans all stages of swallowing: oral, pharyngeal, and esophageal. The next step is to build upon this foundational work by exploring the responsible mechanisms of presbyphagia in B6 mice.

Keywords

Deglutition Deglutition disorders C57BL/6 C57 B6 Mouse Murine Aging Swallow Dysphagia Presbyphagia Videofluoroscopic swallow study VFSS 

Notes

Acknowledgments

We graciously thank past members of the Lever Lab who contributed to preliminary data collection using non-radiographic lick rate methods (Danarae Aleman, Laura Powell, and Andries Ferreira). We also acknowledge Roderic Schlotzhauer from the University of Missouri Physics Machine Shop for design input and fabrication of the VFSS test chambers that were essential to this study. We sincerely thank Dr. Fu-Hung Hsieh’s lab at the University of Missouri Department of Bioengineering for assistance in gathering rheological data. Our highest gratitude extends to Dr. Grace Pavlath (Emory University), who facilitated our acquisition of the fluoroscope used to collect data for this study. This study was funded by NIH/NIDCD (R03DC010895, TE Lever), NIH/NINDS (R21N5084870-01, GK Pavlath), Otolaryngology – Head and Neck Surgery start-up funds (TE Lever), MU PRIME Fund (TE Lever), Mizzou Advantage (TE Lever), and the MU Center on Aging (TE Lever).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Robbins J, Hamilton JW, Lof GL, Kempster GB. Oropharyngeal swallowing in normal adults of different ages. Gastroenterology. 1992;103:823–9.PubMedGoogle Scholar
  2. 2.
    Ney DM, Weiss JM, Kind AJ, Robbins J. Senescent swallowing: impact, strategies, and interventions. Nutr Clin Pract. 2009;24:395–413.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Robbins J, Bridges AD, Taylor A. Oral, pharyngeal and esophageal motor function in aging. GI Motility online. Nature.com. London: Macmillan Publishers Limited; 2006.Google Scholar
  4. 4.
    Cook IJ, Weltman MD, Wallace K, Shaw DW, McKay E, Smart RC, Butler SP. Influence of aging on oral-pharyngeal bolus transit and clearance during swallowing: scintigraphic study. Am J Physiol. 1994;266:G972–7.PubMedGoogle Scholar
  5. 5.
    Leslie P, Drinnan MJ, Ford GA, Wilson JA. Swallow respiratory patterns and aging: presbyphagia or dysphagia? J Gerontol A. 2005;60:391–5.CrossRefGoogle Scholar
  6. 6.
    Tracy JF, Logemann JA, Kahrilas PJ, Jacob P, Kobara M, Krugler C. Preliminary observations on the effects of age on oropharyngeal deglutition. Dysphagia. 1989;4:90–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Bisch EM, Logemann JA, Rademaker AW, Kahrilas PJ, Lazarus CL. Pharyngeal effects of bolus volume, viscosity, and temperature in patients with dysphagia resulting from neurologic impairment and in normal subjects. J Speech Hear Res. 1994;37:1041–59.PubMedCrossRefGoogle Scholar
  8. 8.
    Lazarus CL, Logemann JA, Rademaker AW, Kahrilas PJ, Pajak T, Lazar R, Halper A. Effects of bolus volume, viscosity, and repeated swallows in nonstroke subjects and stroke patients. Arch Phys Med Rehabil. 1993;74:1066–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Logemann JA, Kahrilas PJ, Cheng J, Pauloski BR, Gibbons PJ, Rademaker AW, Lin S. Closure mechanisms of laryngeal vestibule during swallow. Am J Physiol. 1992;262:G338–44.PubMedGoogle Scholar
  10. 10.
    Ekberg O, Feinberg MJ. Altered swallowing function in elderly patients without dysphagia: radiologic findings in 56 cases. AJR Am J Roentgenol. 1991;156:1181–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Yoshikawa M, Yoshida M, Nagasaki T, Tanimoto K, Tsuga K, Akagawa Y, Komatsu T. Aspects of swallowing in healthy dentate elderly persons older than 80 years. J Gerontol A. 2005;60:506–9.CrossRefGoogle Scholar
  12. 12.
    Zboralske FF, Amberg JR, Soergel KH. Presbyesophagus: cineradiographic manifestations. Radiology. 1964;82:463–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Aly YA, Abdel-Aty H. Normal oesophageal transit time on digital radiography. Clin Radiol. 1999;54:545–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Soergel KH, Zboralske FF, Amberg JR. Presbyesophagus: esophageal motility in nonagenarians. J Clin Invest. 1964;43:1472–9.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Shaker R, Ren J, Zamir Z, Sarna A, Liu J, Sui Z. Effect of aging, position, and temperature on the threshold volume triggering pharyngeal swallows. Gastroenterology. 1994;107:396–402.PubMedGoogle Scholar
  16. 16.
    Humbert IA, Fitzgerald ME, McLaren DG, Johnson S, Porcaro E, Kosmatka K, Hind J, Robbins J. Neurophysiology of swallowing: effects of age and bolus type. Neuroimage. 2009;44:982–91.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Butler SG, Maslan J, Stuart A, Leng X, Wilhelm E, Lintzenich CR, Williamson J, Kritchevsky SB. Factors influencing bolus dwell times in healthy older adults assessed endoscopically. Laryngoscope. 2011;121:2526–34.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Butler SG, Stuart A, Kemp S. Flexible endoscopic evaluation of swallowing in healthy young and older adults. Ann Otol Rhinol Laryngol. 2009;118:99–106.PubMedCrossRefGoogle Scholar
  19. 19.
    Butler SG, Stuart A, Markley L, Rees C. Penetration and aspiration in healthy older adults as assessed during endoscopic evaluation of swallowing. Ann Otol Rhinol Laryngol. 2009;118:190–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Robbins J, Coyle J, Rosenbek J, Roecker E, Wood J. Differentiation of normal and abnormal airway protection during swallowing using the penetration–aspiration scale. Dysphagia. 1999;14:228–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Grishaw EK, Ott DJ, Frederick MG, Gelfand DW, Chen MY. Functional abnormalities of the esophagus: a prospective analysis of radiographic findings relative to age and symptoms. AJR Am J Roentgenol. 1996;167:719–23.PubMedCrossRefGoogle Scholar
  22. 22.
    Kays S, Robbins J. Effects of sensorimotor exercise on swallowing outcomes relative to age and age-related disease. Semin Speech Lang. 2006;27:245–59.PubMedCrossRefGoogle Scholar
  23. 23.
    Humbert IA, Robbins J. Dysphagia in the elderly. Phys Med Rehabil Clin N Am. 2008;19:853–66.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Bureau USC: Statistical Abstract of the United States: 2012. 2012.Google Scholar
  25. 25.
    Howden CW. Management of acid-related disorders in patients with dysphagia. Am J Med. 2004;117(Suppl 5A):44S–8S.PubMedGoogle Scholar
  26. 26.
    Seshamani M, Kashima M. Age-related swallowing changes. 5th ed. Philadelphia: Mosby-Elsevier; 2010.Google Scholar
  27. 27.
    Roy N, Stemple J, Merrill RM, Thomas L. Epidemiology of voice disorders in the elderly: preliminary findings. Laryngoscope. 2007;117:628–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Bult CJ, Eppig JT, Blake JA, Kadin JA, Richardson JE. The mouse genome database: genotypes, phenotypes, and models of human disease. Nucleic Acids Res. 2013;41:D885–91.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Battey J, Peterson J. Model organisms for biomedical research, trans-NIH mouse initiatives. 2014.Google Scholar
  30. 30.
    Abdelkafy WM, Smith JQ, Henriquez OA, Golub JS, Xu J, Rojas M, Brigham KL, Johns MM. Age-related changes in the murine larynx: initial validation of a mouse model. Ann Otol Rhinol Laryngol. 2007;116:618–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Laboratory J. Genotyping protocol for SOD. 2013: from http://jaxmice.jax.org/pub-cgi/protocols/protocols.sh?objtype=protocol&protocol_id=523, 2009.
  32. 32.
    Jackson L. Genotyping protocol for SOD. 2013: from http://jaxmice.jax.org/pub-cgi/protocols/protocols.sh?objtype=protocol&protocol_id=523, 2009.
  33. 33.
    Laboratory TJ. JAX Mice Database. http://jaxmice.jax.org/strain/000664.html, 2014.
  34. 34.
    Aging NIo. Aged Rodent Colonies Handbook: Available Strains.Google Scholar
  35. 35.
    Rt B. Videofluoroscopic characterization of swallowing impairment in mouse models of amyotrophic lateral sclerosis and advanced aging. Columbia: Communication Science and Disorders: University of Missouri; 2014.Google Scholar
  36. 36.
    Lever TE, Gorsek A, Cox KT, O’Brien KF, Capra NF, Hough MS, Murashov AK. An animal model of oral dysphagia in amyotrophic lateral sclerosis. Dysphagia. 2009;24:180–95.PubMedCrossRefGoogle Scholar
  37. 37.
    Lever TE, Simon E, Cox KT, Capra NF, O’Brien KF, Hough MS, Murashov AK. A mouse model of pharyngeal dysphagia in amyotrophic lateral sclerosis. Dysphagia. 2010;25:112–26.PubMedCrossRefGoogle Scholar
  38. 38.
    Carvalho TC, Gerstner GE. Licking rate adaptations to increased mandibular weight in the adult rat. Physiol Behav. 2004;82:331–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Logemann JA, Larsen K. Oropharyngeal dysphagia: pathophysiology and diagnosis for the anniversary issue of diseases of the esophagus. Dis Esophagus. 2012;25:299–304.PubMedCrossRefGoogle Scholar
  40. 40.
    Logemann JA. Swallowing disorders. Best Pract Res Clin Gastroenterol. 2007;21:563–73.PubMedCrossRefGoogle Scholar
  41. 41.
    Martin-Harris B, Jones B. The videofluorographic swallowing study. Phys Med Rehabil Clin N Am. 2008;19:769–85.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Lever TE, Braun SM, Brooks RT, Harris RA, Littrell LL, Neff RM, Hinkel CJ, Allen MJ, Ulsas MA. Adapting human videofluoroscopic swallow study methods to detect and characterize dysphagia in murine disease models. J Vis Exp, in press, 2014.Google Scholar
  43. 43.
    Berry RJ. The natural history of the house mouse. Field Stud. 1970;3:219–62.Google Scholar
  44. 44.
    Emond M, Faubert S, Perkins M. Social conflict reduction program for male mice. Contemp Top Lab Anim Sci. 2003;42:24–6.PubMedGoogle Scholar
  45. 45.
    Scott JP. Agonistic behavior of mice and rats: a review. Am Zool. 1966;6:683–701.PubMedGoogle Scholar
  46. 46.
    Van Loo P, Kruitwagon C, Van Zutphen L, Koolhaas J, Baumans V. Modulation of aggression in male mice: influence of cage cleaning regime and scent markers. Anim Welf. 2000;9:281–95.Google Scholar
  47. 47.
    Russell JA, Ciucci MR, Hammer MJ, Connor NP. Videofluorographic assessment of deglutitive behaviors in a rat model of aging and Parkinson disease. Dysphagia. 2013;28:95–104.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    ADA. NDDTF: National Dysphagia Diet: Standardization for Optimal Care. Chicago: American Dietetic Association; 2002.Google Scholar
  49. 49.
    Worl J, Neuhuber WL. Enteric co-innervation of motor endplates in the esophagus: state of the art ten years after. Histochem Cell Biol. 2005;123:117–30.PubMedCrossRefGoogle Scholar
  50. 50.
    Boughter JD Jr, Mulligan MK, John SJ, Tokita K, Lu L, Heck DH, Williams RW. Genetic control of a central pattern generator: rhythmic oromotor movement in mice is controlled by a major locus near Atp1a2. PLoS One. 2012;7:e38169.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Shock LA, Gallemore BC, Hinkel CJ, Szewczyk MM, Hopewell BL, Allen MJ, Thombs LA, Lever TE. Improving the utility of laryngeal adductor reflex testing: a translational tale of mice and men. Otolaryngology, in press.Google Scholar
  52. 52.
    Agrawal A, Rengarajan S, Adler KB, Ram A, Ghosh B, Fahim M, Dickey BF. Inhibition of mucin secretion with MARCKS-related peptide improves airway obstruction in a mouse model of asthma. J Appl Physiol. 1985;102(399–405):2007.Google Scholar
  53. 53.
    Agrawal A, Singh SK, Singh VP, Murphy E, Parikh I. Partitioning of nasal and pulmonary resistance changes during noninvasive plethysmography in mice (1985). J Appl Physiol. 2008;105:1975–9.PubMedCrossRefGoogle Scholar
  54. 54.
    D’Ottaviano FG, Linhares Filho TA, Andrade HM, Alves PC, Rocha MS. Fiberoptic endoscopy evaluation of swallowing in patients with amyotrophic lateral sclerosis. Braz J Otorhinolaryngol. 2013;79:349–53.PubMedCrossRefGoogle Scholar
  55. 55.
    Inamoto Y, Saitoh E, Okada S, Kagaya H, Shibata S, Ota K, Baba M, Fujii N, Katada K, Wattanapan P, Palmer JB. The effect of bolus viscosity on laryngeal closure in swallowing: kinematic analysis using 320-row area detector CT. Dysphagia. 2013;28:33–42.PubMedCrossRefGoogle Scholar
  56. 56.
    Sugiyama N, Nishiyama E, Nishikawa Y, Sasamura T, Nakade S, Okawa K, Nagasawa T, Yuki A. A novel animal model of dysphagia following stroke. Dysphagia. 2014;29:61–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Ciucci MR, Russell JA, Schaser AJ, Doll EJ, Vinney LM, Connor NP. Tongue force and timing deficits in a rat model of Parkinson disease. Behav Brain Res. 2011;222:315–20.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Ciucci MR, Schaser AJ, Russell JA. Exercise-induced rescue of tongue function without striatal dopamine sparing in a rat neurotoxin model of Parkinson disease. Behav Brain Res. 2013;252:239–45.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Plowman EK, Kleim JA. Behavioral and neurophysiological correlates of striatal dopamine depletion: a rodent model of Parkinson’s disease. J Commun Disord. 2011;44:549–56.PubMedGoogle Scholar
  60. 60.
    German RZ, Crompton AW, Levitch LC, Thexton AJ. The mechanism of suckling in two species of infant mammal: miniature pigs and long-tailed macaques. J Exp Zool. 1992;261:322–30.PubMedCrossRefGoogle Scholar
  61. 61.
    Thexton AJ, Crompton AW, German RZ. Transition from suckling to drinking at weaning: a kinematic and electromyographic study in miniature pigs. J Exp Zool. 1998;280:327–43.PubMedCrossRefGoogle Scholar
  62. 62.
    Ding P, Campbell-Malone R, Holman SD, Lukasik SL, Thexton AJ, German RZ. The effect of unilateral superior laryngeal nerve lesion on swallowing threshold volume. Laryngoscope. 2013;123:1942–7.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Holman SD, Campbell-Malone R, Ding P, Gierbolini-Norat EM, Griffioen AM, Inokuchi H, Lukasik SL, German RZ. Development, reliability, and validation of an infant mammalian penetration-aspiration scale. Dysphagia. 2013;28:178–87.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Teresa E. Lever
    • 1
    Email author
  • Ryan T. Brooks
    • 2
  • Lori A. Thombs
    • 3
  • Loren L. Littrell
    • 2
  • Rebecca A. Harris
    • 2
  • Mitchell J. Allen
    • 1
  • Matan D. Kadosh
    • 4
  • Kate L. Robbins
    • 1
  1. 1.Department of Otolaryngology – Head and Neck SurgeryUniversity of Missouri School of MedicineColumbiaUSA
  2. 2.Department of Communication Science and DisordersUniversity of MissouriColumbiaUSA
  3. 3.Department of StatisticsUniversity of MissouriColumbiaUSA
  4. 4.Department of Biological SciencesUniversity of MissouriColumbiaUSA

Personalised recommendations