Dysphagia

, Volume 29, Issue 5, pp 622–628 | Cite as

An Investigation into the Stability and Sterility of Citric Acid Solutions Used for Cough Reflex Testing

  • James R. Falconer
  • Zimei Wu
  • Hugo Lau
  • Joanna Suen
  • Lucy Wang
  • Sarah Pottinger
  • Elaine Lee
  • Nawar Alazawi
  • Molly Kallesen
  • Derryn A. Gargiulo
  • Simon Swift
  • Darren Svirskis
Original Article

Abstract

Citric acid is used in cough reflex testing in clinical and research settings to assess reflexive cough in patients at risk of swallowing disorders. To address a lack of knowledge in this area, this study investigated the stability and sterility of citric acid solutions. Triplicate solutions of citric acid (0.8 M) in isotonic saline were stored at 4 ± 2 °C for up to 28 days and analysed by high-performance liquid chromatography. Microbiological sterility of freshly prepared samples and bulk samples previously used for 2 weeks within the hospital was determined using a pour plate technique. Microbial survival in citric acid was determined by inoculating Staphylococcus aureus, Escherichia coli, or Candida albicans into citric acid solution and monitoring the number of colony-forming units/mL over 40 min. Citric acid solutions remained stable at 4 °C for 28 days (98.4 ± 1.8 % remained). The freshly prepared and clinical samples tested were sterile. However, viability studies revealed that citric acid solution allows for the survival of C. albicans but not for S. aureus or E. coli. The microbial survival study showed that citric acid kills S. aureus and E. coli but has no marked effect on C. albicans after 40 min. Citric acid samples at 0.8 M remained stable over the 4-week testing period, with viable microbial cells absent from samples tested. However, C. albicans has the ability to survive in citric acid solution if inadvertently introduced in practice. For this reason, in clinical and research practice it is suggested to use single-use aliquots prepared aseptically which can be stored for up to 28 days at 4 °C.

Keywords

Citric acid Cough reflex testing Stability Sterility Tussigenic challenge Deglutition Deglutition disorders 

References

  1. 1.
    Miles A, Zengc IS, McLauchland H, Huckabee ML. Cough reflex testing in dysphagia following stroke: a randomised controlled trial. J Clin Med Res. 2013;5(3):222–33.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Niimi A, Matsumoto H, Ueda T, Takemura M, Suzuki K, Tanaka E, et al. Impaired cough reflex in patients with recurrent pneumonia. Thorax. 2003;58(2):152–3.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Addington WR, Stephens RE, Gilliland K, Rodriguez M. Assessing the laryngeal cough reflex and the risk of developing pneumonia after stroke. Arch Phys Med Rehabil. 1999;80(2):150–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Sekizawa K, Ujiie Y, Itabashi S, Sasaki H, Takishima T. Lack of cough reflex in aspiration pneumonia. Lancet. 1990;335(8699):1228–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Fontana GA, Widdicombe J. What is cough and what should be measured? Pulm Pharmacol Ther. 2007;20(4):307–12.PubMedCrossRefGoogle Scholar
  6. 6.
    Eisenstadt ES. Dysphagia and aspiration pneumonia in older adults. J Am Assoc Nurse Pract. 2010;22(1):17–22.CrossRefGoogle Scholar
  7. 7.
    Dicpinigaitis P. Experimentally induced cough. Pulm Pharmacol Ther. 2007;20(4):319–24.PubMedCrossRefGoogle Scholar
  8. 8.
    Morice A, Fontana G, Belvisi M, Birring S, Chung K, Dicpinigaitis P, et al. ERS guidelines on the assessment of cough. Eur Respir J. 2007;29(6):1256–76.PubMedCrossRefGoogle Scholar
  9. 9.
    Chung KF. Measurement of cough. Respir Physiol Neurobiol. 2006;152(3):329–39.PubMedCrossRefGoogle Scholar
  10. 10.
    Sato M, Tohara H, Iida T, Wada S, Inoue M, Ueda K. Simplified cough test for screening silent aspiration. Arch Phys Med Rehabil. 2012;93(11):1982–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Ricciardolo FL. Mechanisms of citric acid-induced bronchoconstriction. Am J Med. 2001;111:18S–24S.PubMedCrossRefGoogle Scholar
  12. 12.
    Wong AW, Datla A. Assay and stability testing. Separ Sci Technol. 2005;6:335–58.Google Scholar
  13. 13.
    Pharmaceutical Society of New Zealand. Pharmacy Practice Handbook. Wellington. Wellington: The Pharmaceutical Society of New Zealand; 2003.Google Scholar
  14. 14.
    Kopec SE, DeBellis RJ, Irwin RS. Chemical analysis of freshly prepared and stored capsaicin solutions: implications for tussigenic challenges. Pulm Pharmacol Ther. 2002;15:529–34.PubMedCrossRefGoogle Scholar
  15. 15.
    Woods DJ. Extemporaneous formulations of oral liquids: a guide.dunedin. Dunedin: Healthcare Otago; 2012.Google Scholar
  16. 16.
    Eileen KT, Gargiulo D, Bunt C, Garg S. Quality, safety and efficacy in the off-label use of medicines. Curr Drug Saf. 2007;2(1):89–95.CrossRefGoogle Scholar
  17. 17.
    Food and Drug Administration. Guidance for Industry: Nasal Spray and Inhalation Solution, Suspension, and Spray Drug Products, Chemistry, Manufacturing, and Controls (CMC) Documentation. Available at http://www.fda.gov/cder/guidance/index.htm.
  18. 18.
    El-Solh AA, Pietrantoni C, Bhat A, Aquilina AT, Okada M, Grover V, Gifford N. Microbiology of severe aspiration pneumonia in institutionalized elderly. Am J Respir Crit Care Med. 2003;167:1650–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Kastelik JA, Thompson RH, Aziz I, Ojoo JC, Redington AE, Morice AH. Sex-related differences in cough reflex sensitivity in patients with chronic cough. Am J Respir Crit Care Med. 2002;166:961–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Violeta N, Trandafir I, Ionica M. HPLC organic acid analysis in different citrus juices under reversed phase conditions. Not Bot Hort Agrobot Cluj Napoca. 2010;38(1):44–8.Google Scholar
  21. 21.
    Sánchez-Machado DI, López-Cervantes J, Martínez-Cruz O. Quantification of organic acids in fermented shrimp waste by HPLC. Food Technol Biotechnol. 2008;46(4):456–60.Google Scholar
  22. 22.
    Cunha SC, Ferreira IM, Fernandes JO, Faria MA, Beatriz M, Oliveira P, et al. Determination of lactic, acetic, succinic, and citric acids in table olives by HPLC/UV. J Liq Chromatogr Relat Technol. 2001;24(7):1029–38.CrossRefGoogle Scholar
  23. 23.
    Jham GN, Fernandes SA, Garcia CF, Palmquist D. Comparison of GC and HPLC for quantification of organic acids in two jaboticaba (Myrciaria) fruit varieties. Quím Nova. 2007;30(7):1529.CrossRefGoogle Scholar
  24. 24.
    Amelin V, Podkolzin I, Tretiakov A. Determination of organic acids in alcoholic and nonalcoholic beverages by reversed-phase high-performance liquid chromatography. J Anal Chem. 2012;67(3):262–8.CrossRefGoogle Scholar
  25. 25.
    Guideline ICH. Validation of Analytical Procedures: Text and Methodology Q2 (R1), 2005. Available at http://www.ich.org/cache/compo/363-272-1.html 2010.
  26. 26.
    Kroll R, Patchett R. Induced acid tolerance in Listeria monocytogenes. Lett Appl Microbiol. 1992;14(5):224–7.CrossRefGoogle Scholar
  27. 27.
    General Purpose Media (GPM). Tryptone Soya Broth (Casein soya bean digest medium) EP/USP/JP/BP by Thermo Scientific (Oxoid Microbiology Products), 2013. Available at http://www.oxoid.com/UK/blue/prod_detail/prod_detail.asp?pr=CM0129.
  28. 28.
    Virto R, Sanz D, Alvarez I, Raso J. Inactivation kinetics of Yersinia enterocolitica by citric and lactic acid at different temperatures. Int J Food Microbiol. 2005;103(3):251–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Sutherland J, Bayliss A, Roberts T. Predictive modelling of growth of Staphylococcus aureus: the effects of temperature, pH and sodium chloride. Int J Food Microbiol. 1994;21(3):217–36.PubMedCrossRefGoogle Scholar
  30. 30.
    Sutherland J, Bayliss A, Braxton D. Predictive modelling of growth of Escherichia coli O157:H7: the effects of temperature, pH and sodium chloride. Int J Food Microbiol. 1995;25(1):29–49.PubMedCrossRefGoogle Scholar
  31. 31.
    Kim J, Sudbery P. Candida albicans, a major human fungal pathogen. J Microbiol. 2011;49(2):171–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Mayer FL, Wilson D, Hub B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):250–385.CrossRefGoogle Scholar
  33. 33.
    Nack Z. Microbiocidal activity of selected weak organic acids, PhD thesis. NOVA: The University of Newcastle’s Digital Repository, 2012. Available at http://hdl.handle.net/1959.13/936167.
  34. 34.
    Drug Future, Chemical Index Database, Citric Acid. 2013; Available at http://www.drugfuture.com/chemdata/citric-acid.html (accessed April 28, 2014).
  35. 35.
    Lambert R, Stratford M. Weak acid preservatives: modelling microbial inhibition and response. J Appl Microbiol. 1999;86(1):157–64.PubMedCrossRefGoogle Scholar
  36. 36.
    Brul S, Coote P. Preservative agents in foods: mode of action and microbial resistance mechanisms. Int J Food Microbiol. 1999;50(1):1–17.PubMedCrossRefGoogle Scholar
  37. 37.
    Raftari M, Jalilian FA, Abdulamir A, Son R, Sekawi Z, Fatimah A. Effect of organic acids on Escherichia coli O157:H7 and Staphylococcus aureus contaminated meat. Open Microbiol J. 2009;3:121.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Virto R, Sanz D, Alvarez I, Raso J. Inactivation kinetics of Yersinia enterocolitica by citric and lactic acid at different temperatures. Int J Food Microbiol. 2005;103(3):251–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Lee Y, Cesario T, Owens J, Shanbrom E, Thrupp LD. Antibacterial activity of citrate and acetate. Nutrition. 2002;18(7):665–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Garg S, Kauffmann K, Othman A, Ticehurst R, Sharma M, Svirskis D. Stability assessment of extemporaneous formulation of amoxicillin for parenteral antimicrobial therapy. Curr Pharm Anal. 2012;8:375–80.CrossRefGoogle Scholar
  41. 41.
    Gargiulo DA, Sheridan J, Webster CS, Swift S, Torrie J, Weller J, Henderson K, Hannam J, Merry AF. Anaesthetic drug administration as a potential contributor to healthcare-associated infections: a prospective simulation-based evaluation of aseptic techniques in the administration of anaesthetic drugs. BMJ Qual Saf. 2012;21:826–34.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • James R. Falconer
    • 1
  • Zimei Wu
    • 1
  • Hugo Lau
    • 1
  • Joanna Suen
    • 1
  • Lucy Wang
    • 1
  • Sarah Pottinger
    • 1
  • Elaine Lee
    • 1
  • Nawar Alazawi
    • 1
  • Molly Kallesen
    • 2
  • Derryn A. Gargiulo
    • 1
  • Simon Swift
    • 3
  • Darren Svirskis
    • 1
  1. 1.School of Pharmacy, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
  2. 2.Capital & Coast DHBWellington HospitalWellingtonNew Zealand
  3. 3.Department of Molecular Medicine and PathologyUniversity of AucklandAucklandNew Zealand

Personalised recommendations