Advertisement

From Crossing-Free Graphs on Wheel Sets to Embracing Simplices and Polytopes with Few Vertices

  • Alexander Pilz
  • Emo Welzl
  • Manuel WettsteinEmail author
Ricky Pollack Memorial Issue
  • 8 Downloads

Abstract

A set \(P = H \cup \{w\}\) of \(n+1\) points in general position in the plane is called a wheel set if all points but w are extreme. We show that for the purpose of counting crossing-free geometric graphs on such a set P, it suffices to know the frequency vector of P. While there are roughly \(2^n\) distinct order types that correspond to wheel sets, the number of frequency vectors is only about \(2^{n/2}\). We give simple formulas in terms of the frequency vector for the number of crossing-free spanning cycles, matchings, triangulations, and many more. Based on that, the corresponding numbers of graphs can be computed efficiently. In particular, we rediscover an already known formula for w-embracing triangles spanned by H. Also in higher dimensions, wheel sets turn out to be a suitable model to approach the problem of computing the simplicial depth of a point w in a set H, i.e., the number of w-embracing simplices. While our previous arguments in the plane do not generalize easily, we show how to use similar ideas in \(\mathbb {R}^d\) for any fixed d. The result is an \(O(n^{d-1})\) time algorithm for computing the simplicial depth of a point w in a set H of n points, improving on the previously best bound of \(O(n^d\log n)\). Based on our result about simplicial depth, we can compute the number of facets of the convex hull of \(n=d+k\) points in general position in \(\mathbb {R}^d\) in time \(O(n^{\max \{\omega ,k-2\}})\) where \(\omega \approx 2.373\), even though the asymptotic number of facets may be as large as \(n^k\).

Keywords

Geometric graphs Order types Frequency vectors Embracing triangles Simplicial depth Polytopes 

Mathematics Subject Classification

05A19 05C30 52C99 

Notes

Acknowledgements

The first author acknowledges support by a Schrödinger fellowship of the Austrian Science Fund (FWF): J-3847-N35.

References

  1. 1.
    Ábrego, B.M., Fernández-Merchant, S.: A lower bound for the rectilinear crossing number. Graphs Comb. 21(3), 293–300 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Afshani, P., Sheehy, D.R., Stein, Y.: Approximating the simplicial depth (2015). arXiv:1512.04856
  3. 3.
    Aichholzer, O., Hackl, T., Huemer, C., Hurtado, F., Krasser, H., Vogtenhuber, B.: On the number of plane geometric graphs. Graphs Combin. 23(Supplement–1), 67–84 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Aigner, M.: Motzkin numbers. Eur. J. Combin. 19(6), 663–675 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Arkin, E.M., Khuller, S., Mitchell, J.S.B.: Geometric knapsack problems. Algorithmica 10(5), 399–427 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Becker, H.W.: Planar rhyme schemes. Bull. Am. Math. Soc. 58, 39 (1952)Google Scholar
  7. 7.
    Brouwer, A.E.: The enumeration of locally transitive tournaments. Technical Report Report ZW 138/80, Mathematisch Centrum, Amsterdam (1980)Google Scholar
  8. 8.
    Bürgisser, P., Lickteig, T., Clausen, M., Shokrollahi, A.: Algebraic Complexity Theory. Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1996)Google Scholar
  9. 9.
    Cheng, A.Y., Ouyang, M.: On algorithms for simplicial depth. In: Proceedings of the 13th Canadian Conference on Computational Geometry, pp. 53–56 (2001)Google Scholar
  10. 10.
    Dulucq, S., Penaud, J.-G.: Cordes, arbres et permutations. Discret. Math. 117(1), 89–105 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Dumitrescu, A., Schulz, A., Sheffer, A., Tóth, Cs.D.: Bounds on the maximum multiplicity of some common geometric graphs. SIAM J. Discret. Math. 27(2), 802–826 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Edelsbrunner, H., Mücke, E.P.: Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph. 9(1), 66–104 (1990)zbMATHCrossRefGoogle Scholar
  13. 13.
    Edelsbrunner, H., O’Rourke, J., Seidel, R.: Constructing arrangements of lines and hyperplanes with applications. SIAM J. Comput. 15(2), 341–363 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Eppstein, D., Overmars, M.H., Rote, G., Woeginger, G.J.: Finding minimum area \(k\)-gons. Discrete Comput. Geom. 7(1), 45–58 (1992)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Flajolet, P., Noy, M.: Analytic combinatorics of non-crossing configurations. Discrete Math. 204(1–3), 203–229 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Gil, J., Steiger, W.L., Wigderson, A.: Geometric medians. Discrete Math. 108(1–3), 37–51 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Goodman, J.E., Pollack, R.: Multidimensional sorting. SIAM J. Comput. 12(3), 484–507 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Goodman, J.E., Pollack, R.: Semispaces of configurations, cell complexes of arrangements. J. Combin. Theory Ser. A 37(3), 257–293 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Grünbaum, B.: Convex Polytopes, 2nd edn. Springer, Berlin (2003)zbMATHCrossRefGoogle Scholar
  20. 20.
    Huemer, C., Pilz, A., Silveira, R.I.: A new lower bound on the maximum number of plane graphs using production matrices. In: Proceedings of the 34th European Workshop on Computational Geometry, pp. 9:1–9:6 (2018)Google Scholar
  21. 21.
    Hurtado, F., Noy, M.: Counting triangulations of almost-convex polygons. Ars Combin. 45, 169–179 (1997)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Khuller, S., Mitchell, J.S.B.: On a triangle counting problem. Inf. Process. Lett. 33(6), 319–321 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Linusson, S.: The number of \(M\)-sequences and \(f\)-vectors. Combinatorica 19(2), 255–266 (1999)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Liu, R.Y.: On a notion of data depth based on random simplices. Ann. Stat. 18(1), 405–414 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Lovász, L., Vesztergombi, K., Wagner, U., Welzl, E.: Convex quadrilaterals and \(k\)-sets. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs. Contemporary Mathematics, vol. 342, pp. 139–148. American Mathematical Society, Providence (2004)CrossRefGoogle Scholar
  26. 26.
    Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer, New York (2002)Google Scholar
  27. 27.
    Montellano-Ballesteros, J.J., Strausz, R.: Counting polytopes via the Radon complex. J. Comb. Theory Ser. A 106(1), 109–121 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Motzkin, Th.: Relations between hypersurface cross ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products. Bull. Am. Math. Soc. 54(4), 352–360 (1948)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Palmer, E.M., Robinson, R.W.: Enumeration of self-dual configurations. Pac. J. Math. 110(1), 203–221 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Randall, D., Rote, G., Santos, F., Snoeyink, J.: Counting triangulations and pseudo-triangulations of wheels. In: Proceedings of the 13th Canadian Conference on Computational Geometry, pp. 149–152 (2001)Google Scholar
  31. 31.
    Rousseeuw, P.J., Ruts, I.: Bivariate location depth. J. R. Stat. Soc. Ser. C 45(4), 516–526 (1996)zbMATHGoogle Scholar
  32. 32.
    Ruiz-Vargas, A.J., Welzl, E.: Crossing-free perfect matchings in wheel point sets. In: Loebl, M., Nešetřil, J., Thomas, R. (eds.) A Journey Through Discrete Mathematics: A Tribute to Jiří Matoušek, pp. 735–764. Springer, Cham (2017)CrossRefGoogle Scholar
  33. 33.
    Sharir, M., Sheffer, A.: Counting triangulations of planar point sets. Electron. J. Comb. 18(1), Art. No. 70 (2011)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Sharir, M., Welzl, E.: On the number of crossing-free matchings, cycles, and partitions. SIAM J. Comput. 36(3), 695–720 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Sharir, M., Sheffer, A., Welzl, E.: Counting plane graphs: Perfect matchings, spanning cycles, and Kasteleyn’s technique. J. Comb. Theory Ser. A 120(4), 777–794 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Stolfi, J.: Oriented Projective Geometry. Academic Press, Boston (1991)zbMATHGoogle Scholar
  37. 37.
    Wagner, U.: On the rectilinear crossing number of complete graphs. In: Proceedings of the 14th Annual Symposium on Discrete Algorithms, pp. 583–588. ACM/SIAM, San Diego (2003)Google Scholar
  38. 38.
    Wagner, U., Welzl, E.: A continuous analogue of the upper bound theorem. Discrete Comput. Geom. 26(2), 205–219 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Welzl, E.: Entering and leaving \({j}\)-facets. Discrete Comput. Geom. 25(3), 351–364 (2001)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Software TechnologyGraz University of TechnologyGrazAustria
  2. 2.Department of Computer ScienceETH ZürichZurichSwitzerland

Personalised recommendations