Arrangements of Pseudocircles: On Circularizability

  • Stefan Felsner
  • Manfred ScheucherEmail author
Ricky Pollack Memorial Issue


An arrangement of pseudocircles is a collection of simple closed curves on the sphere or in the plane such that any two of the curves are either disjoint or intersect in exactly two crossing points. We call an arrangement intersecting if every pair of pseudocircles intersects twice. An arrangement is circularizable if there is a combinatorially equivalent arrangement of circles. In this paper we present the results of the first thorough study of circularizability. We show that there are exactly four non-circularizable arrangements of 5 pseudocircles (one of them was known before). In the set of 2131 digon-free intersecting arrangements of 6 pseudocircles we identify the three non-circularizable examples. We also show non-circularizability of eight additional arrangements of 6 pseudocircles which have a group of symmetries of size at least 4. Most of our non-circularizability proofs depend on incidence theorems like Miquel’s. In other cases we contradict circularizability by considering a continuous deformation where the circles of an assumed circle representation grow or shrink in a controlled way. The claims that we have all non-circularizable arrangements with the given properties are based on a program that generated all arrangements up to a certain size. Given the complete lists of arrangements, we used heuristics to find circle representations. Examples where the heuristics failed were examined by hand.



  1. 1.
    Agarwal, P.K., Nevo, E., Pach, J., Pinchasi, R., Sharir, M., Smorodinsky, S.: Lenses in arrangements of pseudo-circles and their applications. J. ACM 51, 139–186 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Albenque, M., Knauer, K.: Convexity in partial cubes: the hull number. Discrete Math. 339, 866–876 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Björner, A., Las Vergnas, M., White, N., Sturmfels, B., Ziegler, G.M.: Oriented Matroids, Encyclopedia of Mathematics and Its Applications, vol. 46, 2nd edn. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  4. 4.
  5. 5.
    Bokowski, J., Richter, J.: On the finding of final polynomials. Eur. J. Comb. 11, 21–34 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bokowski, J., Sturmfels, B.: An infinite family of minor-minimal nonrealizable 3-chirotopes. Mathematische Zeitschrift 200, 583–589 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Edelsbrunner, H., Ramos, E.A.: Inclusion-exclusion complexes for pseudodisk collections. Discrete Comput. Geom. 17, 287–306 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Felsner, S., Goodman, J.E.: Pseudoline arrangements. In: Toth, O’Rourke, Goodman, (eds.) Handbook of Discrete and Computational Geometry, 3rd edn. CRC Press, Boca Raton (2018)Google Scholar
  9. 9.
    Felsner, S., Scheucher, M.: Webpage: Homepage of Pseudocircles.
  10. 10.
    Felsner, S., Scheucher, M.: Arrangements of Pseudocircles: Triangles and Drawings (2017). arXiv:1708.06449
  11. 11.
    Felsner, S., Weil, H.: A theorem on higher Bruhat orders. Discrete Comput. Geom. 23, 121–127 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Goodman, J.E., Pollack, R.: Upper bounds for configurations and polytopes in \({\mathbb{R}}^d\). Discrete Comput. Geom. 1, 219–227 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Goodman, J.E., Pollack, R.: Allowable sequences and order types in discrete and computational geometry. In: Pach, J. (ed.) New Trends in Discrete and Computational Geometry, pp. 103–134. Springer, New York (1993)CrossRefGoogle Scholar
  14. 14.
    Grünbaum, B.: Arrangements and Spreads, CBMS Regional Conference Series in Mathematics, AMS, vol. 10 (1972) (reprinted 1980)Google Scholar
  15. 15.
    Kang, R.J., Müller, T.: Arrangements of pseudocircles and circles. Discrete Comput. Geom. 51, 896–925 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Knuth, D.E.: Axioms and Hulls, LNCS 606. Springer, New York (1992)CrossRefGoogle Scholar
  17. 17.
    Krasser, H.: Order types of point sets in the plane, PhD thesis, Graz University of Technology, Austria (2003)Google Scholar
  18. 18.
    Levi, F.: Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade. Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse 78, 256–267 (1926)zbMATHGoogle Scholar
  19. 19.
    Linhart, J., Ortner, R.: An Arrangement of Pseudocircles Not Realizable with Circles. Beiträge zur Algebra und Geometrie 46, 351–356 (2005)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Matoušek, J.: Lectures on Discrete Geometry. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    Matoušek, J.: Intersection graphs of segments and \(\exists {\mathbb{R}}\) (2014). arXiv:1406.2636
  22. 22.
    Mnëv, N.E.: The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. In: Topology and Geometry—Rohlin Seminar, LNM 1346, pp. 527–543. Springer (1988)Google Scholar
  23. 23.
    Richter-Gebert, J.: Mnëv’s Universality Theorem Revisited. Séminaire Lotharingien de Combinatoire 34 (1995)Google Scholar
  24. 24.
    Richter-Gebert, J.: Perspectives on Projective Geometry—A Guided Tour through Real and Complex Geometry. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  25. 25.
    Schaefer, M., Štefankovič, D.: Fixed points, nash equilibria, and the existential theory of the reals. Theory Comput. Syst. 60, 172–193 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences, sequences A250001 and A288567.
  27. 27.
    Snoeynik, J., Hershberger, J.: Sweeping arrangements of curves. In: Goodman, J.E., Pollack, R.D., Steiger, W.L. (eds.) Discrete & Computational Geometry, DIMACS DMTCS Series, vol. 6, pp. 309–349. AMS (1991)Google Scholar
  28. 28.
    Stein, W.A., et al.: Sage Mathematics Software (Version 8.0), The Sage Development Team (2017).
  29. 29.
    Stein, W.A., et al.: Sage Reference Manual: Algebraic Numbers and Number Fields (Release 8.0) (2017).
  30. 30.
    Stein, W.A., et al.: Sage Reference Manual: Graph Theory (Release 8.0). (2017).
  31. 31.
    Suvorov, P.: Isotopic but not rigidly isotopic plane systems of straight lines. In: Topology and Geometry – Rohlin Seminar, LNM 1346, pp. 545–556 Springer (1988)Google Scholar
  32. 32.
    Tutte, W.T.: A census of planar triangulations. Can. J. Math. 14, 21–38 (1962)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations