Advertisement

Tilings of Convex Sets by Mutually Incongruent Equilateral Triangles Contain Arbitrarily Small Tiles

  • Christian RichterEmail author
  • Melchior Wirth
Article
  • 7 Downloads

Abstract

We show that every tiling of a convex set in the Euclidean plane \(\mathbb {R}^2\) by equilateral triangles of mutually different sizes contains arbitrarily small tiles. The proof is purely elementary up to the discussion of one family of tilings of the full plane \(\mathbb {R}^2\), which is based on a surprising connection to a random walk on a directed graph.

Keywords

Perfect tiling Equilateral triangle Convex set Random walk Recurrent Markov chain 

Mathematics Subject Classification

52C20 (Primary) 05C81 51M20 60J10 (Secondary) 

Notes

References

  1. 1.
    Aduddell, R., Ascanio, M., Deaton, A., Mann, C.: Unilateral and equitransitive tilings by equilateral triangles. Discrete Math. 340(7), 1669–1680 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brooks, R.L., Smith, C.A.B., Stone, A.H., Tutte, W.T.: The dissection of rectangles into squares. Duke Math. J. 7, 312–340 (1940)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Buchman, E.: The impossibility of tiling a convex region with unequal equilateral triangles. Am. Math. Mon. 88(10), 748–753 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Croft, H.T., Falconer, K.J., Guy, R.K.: Unsolved Problems in Geometry: Unsolved Problems in Intuitive Mathematics. Problem Books in Mathematics, vol. 2. Springer, New York (1991)Google Scholar
  5. 5.
    Frettlöh, D.: Noncongruent equidissections of the plane. In: Conder, M.D.E., Deza, A., Weiss, A.I. (eds.) Discrete Geometry and Symmetry. Springer Proceedings in Mathematics and Statistics, vol. 234, pp. 171–180. Springer, Cham (2018)CrossRefGoogle Scholar
  6. 6.
    Grünbaum, B., Shephard, G.C.: Tilings and Patterns. W.H. Freeman and Company, New York (1987)zbMATHGoogle Scholar
  7. 7.
    Kupavskii, A., Pach, J., Tardos, G.: Tilings with noncongruent triangles. Eur. J. Comb. 73, 72–80 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kupavskii, A., Pach, J., Tardos, G.: Tilings of the plane with unit area triangles of bounded diameter. Acta Math. Hung. 155(1), 175–183 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Nandakumar, R.: http://nandacumar.blogspot.com, blog entries of December 10, 2014, January 2, 2015, June 14, 2016, November 23, 2017, and November 7, 2018
  10. 10.
    Pach, J., Tardos, G.: Tiling the plane with equilateral triangles (2018). arXiv:1805.08840
  11. 11.
    Richter, C.: Tiling by incongruent equilateral triangles without requiring local finiteness. Elem. Math. 67(4), 157–163 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Richter, C.: Tiling by incongruent equilateral triangles without requiring local finiteness. Part II. Elem. Math. 73(1), 15–22 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Scherer, K.: The impossibility of a tessellation of the plane into equilateral triangles whose sidelengths are mutually different, one of them being minimal. Elem. Math. 38(1), 1–4 (1983)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Tutte, W.T.: The dissection of equilateral triangles into equilateral triangles. Proc. Camb. Philos. Soc. 44, 463–482 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Tuza, Z.S.: Dissections into equilateral triangles. Elem. Math. 46(6), 153–158 (1991)Google Scholar
  16. 16.
    Woess, W.: Denumerable Markov Chains: Generating Functions, Boundary Theory, Random Walks on Trees. EMS Textbooks in Mathematics. European Mathematical Society, Zürich (2009)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of MathematicsFriedrich Schiller UniversityJenaGermany

Personalised recommendations