Drawing Graphs Using a Small Number of Obstacles

Article
  • 32 Downloads

Abstract

An obstacle representation of a graph G is a set of points in the plane representing the vertices of G, together with a set of polygonal obstacles such that two vertices of G are connected by an edge in G if and only if the line segment between the corresponding points avoids all the obstacles. The obstacle number\({{\mathrm{obs}}}(G)\)ofG is the minimum number of obstacles in an obstacle representation of G. We provide the first non-trivial general upper bound on the obstacle number of graphs by showing that every n-vertex graph G satisfies \({{\mathrm{obs}}}(G) \le n\lceil \log {n}\rceil -n+1\). This refutes a conjecture of Mukkamala, Pach, and Pálvölgyi. For n-vertex graphs with bounded chromatic number, we improve this bound to O(n). Both bounds apply even when the obstacles are required to be convex. We also prove a lower bound \(2^{\Omega (hn)}\) on the number of n-vertex graphs with obstacle number at most h for \(h<n\) and a lower bound \(\Omega (n^{4/3}M^{2/3})\) for the complexity of a collection of \(M \ge \Omega (n\log ^{3/2}{n})\) faces in an arrangement of line segments with n endpoints. The latter bound is tight up to a multiplicative constant.

Keywords

Obstacle number Geometric drawing Arrangements of line segments 

Mathematics Subject Classification

05C62 68R10 52C30 

References

  1. 1.
    Alpert, H., Koch, C., Laison, J.D.: Obstacle numbers of graphs. Discrete Comput. Geom. 44(1), 223–244 (2010)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Arkin, E.M., Halperin, D., Kedem, K., Mitchell, J.S.B., Naor, N.: Arrangements of segments that share endpoints: single face results. Discrete Comput. Geom. 13(3–4), 257–270 (1995)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Aronov, B., Edelsbrunner, H., Guibas, L.J., Sharir, M.: The number of edges of many faces in a line segment arrangement. Combinatorica 12(3), 261–274 (1992)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Balko, M., Cibulka, J., Valtr, P.: Drawing graphs using a small number of obstacles. In: Di Giacomo, E., Lubiw, A. (eds.) Graph Drawing and Network Visualization. Lecture Notes in Computer Science, vol. 9411, pp. 360–372. Springer, Cham (2015)CrossRefGoogle Scholar
  5. 5.
    Berman, L.W., Chappell, G.G., Faudree, J.R., Gimbel, J., Hartman, C., Williams, G.I.: Graphs with obstacle number greater than one. arXiv:1606.03782 (2016)
  6. 6.
    Chaplick, S., Lipp, F., Park, J.W., Wolff, A.: Obstructing visibilities with one obstacle. In: Hu, Y., Nöllenburg, M. (eds.) Graph Drawing and Network Visualization. Lecture Notes in Computer Science, vol. 9801, pp. 295–308. Springer, Cham (2016)CrossRefGoogle Scholar
  7. 7.
    Dujmović, V., Morin, P.: On obstacle numbers. Electron. J. Comb. 22(3), P3.1 (2015)MathSciNetMATHGoogle Scholar
  8. 8.
    Edelsbrunner, H., Welzl, E.: On the maximal number of edges of many faces in an arrangement. J. Comb. Theory Ser. A 41(2), 159–166 (1986)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Fulek, R., Saeedi, N., Sarıöz, D.: Convex obstacle numbers of outerplanar graphs and bipartite permutation graphs. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 249–261. Springer, New York (2013)CrossRefGoogle Scholar
  10. 10.
    Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Clarendon Press, Oxford (1979)MATHGoogle Scholar
  11. 11.
    Lesniak-Foster, L.M., Straight, H.J.: The cochromatic number of a graph. Ars Comb. 3, 39–45 (1977)MathSciNetMATHGoogle Scholar
  12. 12.
    Matoušek, J., Valtr, P.: The complexity of lower envelope of segments with \(h\) endpoints. In: Bárány, I., Böröczky, K. (eds.) Intuitive Geometry. Bolyai Society of Mathematical Studies, vol. 6, pp. 407–411. János Bolyai Mathematical Society, Budapest (1997)Google Scholar
  13. 13.
    Mukkamala, P., Pach, J., Pálvölgyi, D.: Lower bounds on the obstacle number of graphs. Electron. J. Comb. 19(2), P32 (2012)MathSciNetMATHGoogle Scholar
  14. 14.
    Mukkamala, P., Pach, J., Sarıöz, D.: Graphs with large obstacle numbers. In: Thilikos, D.M. (ed.) Graph Theoretic Concepts in Computer Science. Lecture Notes in Computer Science, vol. 6410, pp. 292–303. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Pach, J., Sarıöz, D.: On the structure of graphs with low obstacle number. Graphs Comb. 27(3), 465–473 (2011)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Valtr, P.: Convex independent sets and 7-holes in restricted planar point sets. Discrete Comput. Geom. 7(2), 135–152 (1992)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Wiernik, A., Sharir, M.: Planar realizations of nonlinear Davenport–Schinzel sequences by segments. Discrete Comput. Geom. 3(1), 15–47 (1988)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Institute for Theoretical Computer Science, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  2. 2.Alfréd Rényi Institute of MathematicsHungarian Academy of SciencesBudapestHungary

Personalised recommendations