Discrete & Computational Geometry

, Volume 58, Issue 3, pp 543–579 | Cite as

Euclidean Greedy Drawings of Trees

  • Martin Nöllenburg
  • Roman PrutkinEmail author


Greedy embedding (or drawing) is a simple and efficient strategy to route messages in wireless sensor networks. For each source-destination pair of nodes st in a greedy embedding there is always a neighbor u of s that is closer to t according to some distance metric. The existence of greedy embeddings in the Euclidean plane \({\mathbb {R}}^2\) is known for certain graph classes such as 3-connected planar graphs. We completely characterize the trees that admit a greedy embedding in \({\mathbb {R}}^2\). This answers a question by Angelini et al. (Networks 59(3):267–274, 2012) and is a further step in characterizing the graphs that admit Euclidean greedy embeddings.


Greedy drawings Tree drawings Greedy routing 

Mathematics Subject Classification

05C05 05C10 68R10 



M.N. received financial support by the “Concept for the Future” of KIT within the framework of the “German Excellence Initiative”. R.P. was supported by the German Research Foundation (DFG) within the Research Training Group GRK 1194 “Self-Organizing Sensor-Actuator Networks”.


  1. 1.
    Al-Karaki, J.N., Kamal, A.E.: Routing techniques in wireless sensor networks: a survey. IEEE Wireless Commun. 11(6), 6–28 (2004)CrossRefGoogle Scholar
  2. 2.
    Alamdari, S., Chan, T.M., Grant, E., Lubiw, A., Pathak, V.: Self-approaching graphs. In: Didimo, W., Patrignani, M. (eds.) Graph Drawing, vol. 7704. Lecture Notes in Computer Science, pp. 260–271. Springer, Heidelberg (2013)Google Scholar
  3. 3.
    Angelini, P., Di Battista, G., Frati, F.: Succinct greedy drawings do not always exist. Networks 59(3), 267–274 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Angelini, P., Frati, F., Grilli, L.: An algorithm to construct greedy drawings of triangulations. J. Graph Algorithms Appl. 14(1), 19–51 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Comer, D.E.: Internetworking with TCP/IP, Vol. 1: Principles, Protocols, and Architecture. 4th edn. Prentice Hall PTR, Upper Saddle River (2000)Google Scholar
  6. 6.
    Da Lozzo, G., D’Angelo, A., Frati, F.: On planar greedy drawings of 3-connected planar graphs. In: Aronov, B., Katz, M.J. (eds.) 33rd International Symposium on Computational Geometry (SoCG 2017), vol. 77. Leibniz International Proceedings in Informatics (LIPIcs), pp. 33:1–33:16. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany (2017)Google Scholar
  7. 7.
    Dehkordi, H.R., Frati, F., Gudmundsson, J.: Increasing-chord graphs on point sets. J. Graph Algorithms Appl. 19(2), 761–778 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dhandapani, R.: Greedy drawings of triangulations. Discrete Comput. Geom. 43(2), 375–392 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Di Battista, G., Vismara, L.: Angles of planar triangular graphs. SIAM J. Discret. Math. 9(3), 349–359 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Eppstein, D., Goodrich, M.T.: Succinct greedy geometric routing using hyperbolic geometry. IEEE Trans. Comput. 60(11), 1571–1580 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gao, J., Guibas, L.J.: Geometric algorithms for sensor networks. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 370(1958), 27–51 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Goodrich, M.T., Strash, D.: Succinct greedy geometric routing in the Euclidean plane. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) Algorithms and Computation, vol. 5878. Lecture Notes in Computer Science, pp. 781–791. Springer, Berlin (2009)Google Scholar
  13. 13.
    Icking, C., Klein, R., Langetepe, E.: Self-approaching curves. Math. Proc. Camb. Philos. Soc. 125(3), 441–453 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. Wiley, Hoboken (2005)CrossRefGoogle Scholar
  15. 15.
    Kleinberg, R.: Geographic routing using hyperbolic space. In: Proceedings of the 26th IEEE International Conference on Computer Communications (INFOCOM’07), pp. 1902–1909. IEEE, Piscataway (2007)Google Scholar
  16. 16.
    Leighton, T., Moitra, A.: Some results on greedy embeddings in metric spaces. Discrete Comput. Geom. 44(3), 686–705 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mastakas, K., Symvonis, A.: On the construction of increasing-chord graphs on convex point sets. In: Proceedings of the 6th International Conference on Information, Intelligence, Systems and Applications (IISA’15), pp. 1–6. IEEE, Piscataway (2015)Google Scholar
  18. 18.
    Nöllenburg, M., Prutkin, R.: Euclidean greedy drawings of trees. In: Bodlaender, H.L., Italiano, G.F. (eds.) Algorithms-ESA 2013, vol. 8125. Lecture Notes in Computer Science, pp. 767–778. Springer, Heidelberg (2013)Google Scholar
  19. 19.
    Nöllenburg, M., Prutkin, R., Rutter, I.: On self-approaching and increasing-chord drawings of 3-connected planar graphs. J. Comput. Geom. 7(1), 47–69 (2016)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing. Theor. Comput. Sci. 344(1), 3–14 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic routing without location information. In: Proceedings of the 9th Annual International Conference on Mobile Computing and Networking (MobiCom’03), pp. 96–108. ACM, New York (2003)Google Scholar
  22. 22.
    Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’90), pp. 138–148. SIAM, Philadelphia (1990)Google Scholar
  23. 23.
    Stojmenovic, I., Lin, X.: Loop-free hybrid single-path/flooding routing algorithms with guaranteed delivery for wireless networks. IEEE Trans. Parallel Distrib. Syst. 12(10), 1023–1032 (2001)CrossRefGoogle Scholar
  24. 24.
    Wang, J.-J., He, X.: Succinct strictly convex greedy drawing of 3-connected plane graphs. Theor. Comput. Sci. 532, 80–90 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zheng, J., Jamalipour, A.: Wireless Sensor Networks: A Networking Perspective. Wiley-IEEE Press, Hoboken (2009)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Algorithms and Complexity GroupTU WienViennaAustria
  2. 2.Institute of Theoretical InformaticsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations