Untangling Planar Curves

Article

Abstract

Any generic closed curve in the plane can be transformed into a simple closed curve by a finite sequence of local transformations called homotopy moves. We prove that simplifying a planar closed curve with n self-crossings requires \(\Theta (n^{3/2})\) homotopy moves in the worst case. Our algorithm improves the best previous upper bound \(O(n^2)\), which is already implicit in the classical work of Steinitz; the matching lower bound follows from the construction of closed curves with large defect, a topological invariant of generic closed curves introduced by Aicardi and Arnold. Our lower bound also implies that \(\Omega (n^{3/2})\) facial electrical transformations are required to reduce any plane graph with treewidth \(\Omega (\sqrt{n})\) to a single vertex, matching known upper bounds for rectangular and cylindrical grid graphs. More generally, we prove that transforming one immersion of k circles with at most n self-crossings into another requires \(\Theta (n^{3/2} + nk + k^2)\) homotopy moves in the worst case. Finally, we prove that transforming one non-contractible closed curve to another on any orientable surface requires \(\Omega (n^2)\) homotopy moves in the worst case; this lower bound is tight if the curve is homotopic to a simple closed curve.

Keywords

Curves on surfaces Homotopy Curve invariants Planar graphs \(\Delta \)Y transformations 

Mathematics Subject Classification

57N35 05C10 68W02 

References

  1. 1.
    Aicardi, F.: Tree-like curves. In: Arnold, V.I. (ed.) Singularities and Bifurcations. Advances in Soviet Mathematics, vol. 21, pp. 1–31. American Mathematical Society, Providence (1994)Google Scholar
  2. 2.
    Akers Jr., S.B.: The use of wye-delta transformations in network simplification. Oper. Res. 8(3), 311–323 (1960)CrossRefMATHGoogle Scholar
  3. 3.
    Alexander, J.W.: Combinatorial analysis situs. Trans. Am. Math. Soc. 28(2), 301–329 (1926)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Alexander, J.W., Briggs, G.B.: On types of knotted curves. Ann. Math. 28(1–4), 562–586 (1926/1927)Google Scholar
  5. 5.
    Allen, S.R., Barba, L., Iacono, J., Langerman, S.: Incremental Voronoi diagrams. In: Proceedings of the 32nd International Symposium on Computational Geometry (SoCG’16), pp. 15:1–15:16 (2016) Leibniz International Proceedings in Informatics 51. http://drops.dagstuhl.de/opus/volltexte/2016/5907. http://arxiv.org/abs/1603.08485
  6. 6.
    Angenent, S.: Parabolic equations for curves on surfaces: II. Intersections, blow-up and generalized solutions. Ann. Math. 133(1), 171–215 (1991)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Archdeacon, D., Colbourn, C.J., Gitler, I., Provan, J.S.: Four-terminal reducibility and projective-planar wye-delta-wye-reducible graphs. J. Graph Theory 33(2), 83–93 (2000)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Arnold, V.I.: Plane curves, their invariants, perestroikas and classifications. In: Arnold, V.I. (ed.) Singularities and Bifurcations. Advances in Soviet Mathematics, vol. 21, pp. 33–91. American Mathematical Society, Providence (1994)Google Scholar
  9. 9.
    Arnold, V.T.: Topological Invariants of Plane Curves and Caustics. University Lecture Series, vol. 5. American Mathematical Society, Providence (1994)Google Scholar
  10. 10.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Berlin (2008)CrossRefMATHGoogle Scholar
  11. 11.
    Chang, H.-C., Erickson, J.: Electrical reduction, homotopy moves, and defect (2015). http://arxiv.org/abs/1510.00571
  12. 12.
    Chang, H.-C., Erickson, J.: Untangling planar curves. In: Proceedings of the 32nd International Symposium on Computational Geometry (SoCG’16), 29:1–29:15 (2016). Leibniz International Proceedings in Informatics, vol. 51. http://drops.dagstuhl.de/opus/volltexte/2016/5921
  13. 13.
    Chazelle, B., Edelsbrunner, H.: An optimal algorithm for intersecting line segments in the plane. J. ACM 39(1), 1–54 (1992)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Chmutov, S., Duzhin, S., Mostovoy, J.: Introduction to Vassiliev Knot Invariants. Cambridge University Press, Cambridge (2012). http://www.pdmi.ras.ru/~duzhin/papers/cdbook. http://arxiv.org/abs/1103.5628
  15. 15.
    Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 4(5), 387–421 (1989)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Colbourn, C.J., Provan, J.S., Vertigan, D.: A new approach to solving three combinatorial enumeration problems on planar graphs. Discrete Appl. Math. 60(1–3), 119–129 (1995)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Colin de Verdière, Y., Gitler, I., Vertigan, D.: Réseaux électriques planaires II. Comment. Math. Helv. 71(1), 144–167 (1996)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Conway, J.H.: An enumeration of knots and links, and some of their algebraic properties. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 329–358. Pergamon Press, Oxford (1970)Google Scholar
  19. 19.
    Coward, A., Lackenby, M.: An upper bound on Reidemeister moves. Am. J. Math. 136(4), 1023–1066 (2014). http://arxiv.org/abs/1104.1882
  20. 20.
    Eigenwillig, A., Kerber, M.: Exact and efficient 2D-arrangements of arbitrary algebraic curves. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’08), pp. 122–131. ACM, New York (2008)Google Scholar
  21. 21.
    Epifanov, G.V.: Reduction of a plane graph to an edge by a star-triangle transformation. Sov. Math., Dokl. 7, 13–17 (1966)MathSciNetMATHGoogle Scholar
  22. 22.
    Even-Zohar, C., Hass, J., Linial, N., Nowik, T.: Invariants of random knots and links. Discrete Comput. Geom. 56(2), 274–314 (2016). http://arxiv.org/abs/1411.3308
  23. 23.
    Feo, T.A.: I. A Lagrangian relaxation method for testing the infeasibility of certain VLSI routing problems. II. Efficient reduction of planar networks for solving certain combinatorial problems. Ph.D. thesis, University of California Berkeley, Berkeley (1985). http://search.proquest.com/docview/303364161
  24. 24.
    Feo, T.A., Provan, J.S.: Delta-wye transformations and the efficient reduction of two-terminal planar graphs. Oper. Res. 41(3), 572–582 (1993)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Francis, G.K.: The folded ribbon theorem. A contribution to the study of immersed circles. Trans. Am. Math. Soc. 141, 271–303 (1969)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Gauß, C.F.: Nachlass. I. Zur Geometria situs. Werke, vol. 8, pp. 271–281. Teubner (1900) Originally written between 1823 and 1840Google Scholar
  27. 27.
    Gitler, I.: Delta-wye-delta transformations: algorithms and applications. Ph.D. thesis, University of Waterloo, Waterloo (1991)Google Scholar
  28. 28.
    de Graaf, M., Schrijver, A.: Making curves minimally crossing by Reidemeister moves. J. Combin. Theory Ser. B 70(1), 134–156 (1997)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Grayson, M.A.: Shortening embedded curves. Ann. Math. 129(1), 71–111 (1989)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Grünbaum, B.: Convex Polytopes. Monographs in Pure and Applied Mathematics. Wiley, New York (1967)Google Scholar
  31. 31.
    Guibas, L.J., Stolfi, J.: Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. ACM Trans. Graph. 4(2), 75–123 (1985)CrossRefMATHGoogle Scholar
  32. 32.
    Hass, J., Nowik, T.: Unknot diagrams requiring a quadratic number of Reidemeister moves to untangle. Discrete Comput. Geom. 44(1), 91–95 (2010)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Hass, J., Scott, P.: Intersections of curves on surfaces. Israel J. Math. 51(1–2), 90–120 (1985)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Hass, J., Scott, P.: Shortening curves on surfaces. Topology 33(1), 25–43 (1994)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Hayashi, C., Hayashi, M.: Minimal sequences of Reidemeister moves on diagrams of torus knots. Proc. Am. Math. Soc. 139(7), 2605–2614 (2011). http://arxiv.org/abs/1003.1349
  36. 36.
    Hayashi, C., Hayashi, M., Nowik, T.: Unknotting number and number of Reidemeister moves needed for unlinking. Topology Appl. 159(5), 1467–1474 (2012). http://arxiv.org/abs/1012.4131
  37. 37.
    Hayashi, C., Hayashi, M., Sawada, M., Yamada, S.: Minimal unknotting sequences of Reidemeister moves containing unmatched RII moves. J. Knot Theory Ramifications 21(10), N1250099 (2012). http://arxiv.org/abs/1011.3963
  38. 38.
    Hopf, H.: Über die Drehung der Tangenten und Sehnen ebener Kurven. Compos. Math. 2, 50–62 (1935)MATHGoogle Scholar
  39. 39.
    Ito, N., Takimura, Y.: (1,2) and weak (1,3) homotopies on knot projections. J. Knot Theory Ramifications 22(14), N1350085 (2013). Addendum. J. Knot Theory Ramifications 23(8), N1491001 (2014)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Kennelly, A.E.: Equivalence of triangles and three-pointed stars in conducting networks. Electr. World Eng. 34(12), 413–414 (1899)Google Scholar
  41. 41.
    Khovanov, M.: Doodle groups. Trans. Am. Math. Soc. 349(6), 2297–2315 (1997)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Lackenby, M.: A polynomial upper bound on Reidemeister moves. Ann. Math. 182(2), 491–564 (2015). http://arxiv.org/abs/1302.0180
  43. 43.
    Lehman, A.: Wye-delta transformations in probabilistic network. J. Soc. Indust. Appl. Math. 11, 773–805 (1963)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Mulmuley, K.: A fast planar partition algorithm, I. J. Symb. Comput. 10(3–4), 253–280 (1990)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Nakahara, H., Takahashi, H.: An algorithm for the solution of a linear system by \(\Delta \)-Y transformations. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E79–A(7), 1079–1088 (1996). Special section on multi-dimensional mobile information networkGoogle Scholar
  46. 46.
    Noble, S.D., Welsh, D.J.A.: Knot graphs. J. Graph Theory 34(1), 100–111 (2000)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Nowik, T.: Complexity of plane and spherical curves. Duke J. Math. 148(1), 107–118 (2009)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Paterson, J.M.: A combinatorial algorithm for immersed loops in surfaces. Topology Appl. 123(2), 205–234 (2002)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Polyak, M.: Invariants of curves and fronts via Gauss diagrams. Topology 37(5), 989–1009 (1998)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Reidemeister, K.: Elementare Begründung der Knotentheorie. Abh. Math. Sem. Univ. Hamburg 5(1), 24–32 (1927)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. J. Comb. Theory Ser. B 52(2), 153–190 (1991)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J. Comb. Theory Ser. B 62(2), 232–348 (1994)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Russell, A.: The method of duality. In: A Treatise on the Theory of Alternating Currents, Chapter XVII, pp. 380–399. Cambridge University Press, Cambridge (1904)Google Scholar
  54. 54.
    Song, X.: Implementation issues for Feo and Provan’s delta-wye-delta reduction algorithm. M.Sc. thesis, University of Victoria, Victoria (2001)Google Scholar
  55. 55.
    Steinitz, E.: Polyeder und Raumeinteilungen. Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen III.AB(12), 1–139 (1916)Google Scholar
  56. 56.
    Steinitz, E., Rademacher, H.: Vorlesungen Über die Theorie der Polyeder: unter Einschluss der Elemente der Topologie. Grundlehren der Mathematischen Wissenschaften, vol. 41. Springer, Berlin (1934)MATHGoogle Scholar
  57. 57.
    Storer, J.A.: On minimal-node-cost planar embeddings. Networks 14(2), 181–212 (1984)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Truemper, K.: On the delta-wye reduction for planar graphs. J. Graph Theory 13(2), 141–148 (1989)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Truemper, K.: Matroid Decomposition. Academic Press, Boston (1992)MATHGoogle Scholar
  60. 60.
    Valiant, L.S.: Universality considerations in VLSI circuits. IEEE Trans. Comput. 30(2), 135–140 (1981)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Vegter, G.: Kink-free deformation of polygons. In: Proceedings of the 5th Annual Symposium on Computational Geometry (SCG’89), pp. 61–68. ACM, New York (1989)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations