Expected Length of the Voronoi Path in a High Dimensional Poisson–Delaunay Triangulation

  • Pedro Machado Manhães de Castro
  • Olivier Devillers
Article
  • 47 Downloads

Abstract

Let X be a d dimensional Poisson point process. We prove that the expected length of the Voronoi path between two points at distance 1 in the Delaunay triangulation associated with X is \(\sqrt{\frac{2d}{\pi }}+O(d^{-\frac{1}{2}})\) when \(d\rightarrow \infty \). In any dimension, we also provide a precise interval containing the actual value; in 3D the expected length is between 1.4977 and 1.50007.

Keywords

Random distribution Walking strategies Routing Point location 

Mathematics Subject Classification

68 - Computer science 60 - Probability theory and stochastic processes 

Notes

Acknowledgements

Authors gratefully acknowledge Sylvain Lazard for his help and comments in preparing the final version of the paper.

Supplementary material

454_2017_9866_MOESM1_ESM.pdf (333 kb)
Supplementary material 1 (pdf 333 KB)
454_2017_9866_MOESM2_ESM.mw (201 kb)
Supplementary material 2 (mw 202 KB)

References

  1. 1.
    Baccelli, F., Tchoumatchenko, K., Zuyev, S.: Markov paths on the Poisson–Delaunay graph with applications to routing in mobile networks. Adv. Appl. Probab. 32(1), 1–18 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bose, P., Devroye, L.: On the stabbing number of a random Delaunay triangulation. Comput. Geom. 36(2), 89–105 (2006)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Broutin, N., Devillers, O., Hemsley, R.: Efficiently navigating a random Delaunay triangulation. Random Struct. Algorithms 46(1), 95–136 (2016). https://hal.inria.fr/hal-00940743
  4. 4.
    Chenavier, N., Devillers, O.: Stretch factor of long paths in a planar Poisson–Delaunay triangulation. HAL-Inria, Research Report RR-8935 (2016). https://hal.inria.fr/hal-01346203
  5. 5.
    de Castro, P.M.M., Devillers, O.: Maple code for “Expected length of the Voronoi path in a high dimensional Poisson–Delaunay triangulation”. HAL-Inria, Research Report RR-8947 (2016). Available clicking on a button “see related files”. https://hal.inria.fr/hal-01353735
  6. 6.
    Devillers, O., Hemsley, R.: The worst visibility walk in random Delaunay triangulation is \(O(\sqrt{n})\). J. Comput. Geom. 7(1), 332–359 (2016). https://hal.inria.fr/hal-01348831
  7. 7.
    Devillers, O., Noizet, L.: Walking in a planar Poisson–Delaunay triangulation: shortcuts in the Voronoi path. HAL-Inria, Research Report RR-8946 (2016). https://hal.inria.fr/hal-01353585
  8. 8.
    Devillers, O., Pion, S., Teillaud, M.: Walking in a triangulation. Int. J. Found. Comput. Sci. 13(2), 181–199 (2002). https://hal.inria.fr/inria-00102194
  9. 9.
    Devroye, L., Lemaire, C., Moreau, J.-M.: Expected time analysis for Delaunay point location. Comput. Geom. 29(2), 61–89 (2004)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Schneider, R., Weil, W.: Stochastic and Integral Geometry. Probability and Its Applications (New York). Springer, Berlin (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Pedro Machado Manhães de Castro
    • 1
  • Olivier Devillers
    • 2
    • 3
    • 4
  1. 1.Centro de Informática da Universidade Federal de PernambucoRecifeBrasil
  2. 2.Inria, Centre de recherche Nancy-Grand EstVillers-lès-NancyFrance
  3. 3.Universté de LorraineNancy CedexFrance
  4. 4.CNRSLoriaFrance

Personalised recommendations