Discrete & Computational Geometry

, Volume 57, Issue 1, pp 215–230 | Cite as

On the Combinatorics of Demoulin Transforms and (Discrete) Projective Minimal Surfaces



The classical Demoulin transformation is examined in the context of discrete differential geometry. We show that iterative application of the Demoulin transformation to a seed projective minimal surface generates a \({\mathbb {Z}}^2\) lattice of projective minimal surfaces. Known and novel geometric properties of these Demoulin lattices are discussed and used to motivate the notion of lattice Lie quadrics and associated discrete envelopes and the definition of the class of discrete projective minimal and Q-surfaces (PMQ-surfaces). We demonstrate that the even and odd Demoulin sublattices encode a two-parameter family of pairs of discrete PMQ-surfaces with the property that one discrete PMQ-surface constitute an envelope of the lattice Lie quadrics associated with the other.


Demoulin transformation Lie quadric Projective minimal surface Discrete differential geometry 

Mathematics Subject Classification

53A20 37K25 37K35 



This research was supported by the Australian Research Council (Grant No. DP140100851).


  1. 1.
    Bobenko, A., Pinkall, U.: Discrete surfaces with constant negative Gaussian curvature and the Hirota equation. J. Differ. Geom. 43, 527–611 (1996)MathSciNetMATHGoogle Scholar
  2. 2.
    Bobenko, A.I., Suris, Y.B.: Discrete Differential Geometry. Graduate Studies in Mathematics, vol. 98. American Mathematical Society, Providence, RI (2008)CrossRefGoogle Scholar
  3. 3.
    Bol, G.: Projektive Differentialgeometrie. 2. Teil, vol. 2. Vandenhoeck & Ruprecht, Göttingen (1954)MATHGoogle Scholar
  4. 4.
    Ferapontov, E.V.: Integrable systems in projective differential geometry. Kyushu J. Math. 54(1), 183–215 (2000)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ferapontov, E.V., Schief, W.K.: Surfaces of Demoulin: differential geometry, Bäcklund transformation and integrability. J. Geom. Phys. 30(4), 343–363 (1999)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Hirota, R.: Nonlinear partial difference equations. III. Discrete sine-Gordon equation. J. Phys. Soc. Jpn. 43, 2079–2086 (1977)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Huhnen-Venedey, E., Rörig, T.: Discretization of asymptotic line parametrizations using hyperboloid surface patches. Geom. Dedicata 168, 265–289 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Huhnen-Venedey, E., Schief, W.K.: On Weingarten transformations of hyperbolic nets. Int. Math. Res. Notices 2015, 2021–2081 (2015)MathSciNetMATHGoogle Scholar
  9. 9.
    Mayer, O.: Contribution á l’étude des surfaces minima projectives. Bull. Sci. Math. 146–168, 188–200 (1932)Google Scholar
  10. 10.
    Rogers, C., Schief, W.K.: Bäcklund and Darboux Transformations. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  11. 11.
    Sasaki, T.: Line congruence and transformation of projective surfaces. Kyushu J. Math. 60(1), 101–243 (2006)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Sauer, R.: Parallelogrammgitter als Modelle pseudosphärischer Flächen. Math. Z. 52, 611–622 (1950)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Su, B.: On Demoulin transforms of projective minimal surfaces. I. Sci. Sin. 6, 941–965 (1957)MathSciNetMATHGoogle Scholar
  14. 14.
    Thomsen, G.: Über eine liniengeometrische Behandlungsweise der projektiven Flächentheorie und die projektive Geometrie der Systeme von Flächen zweiter Ordnung. Abh. Math. Sem. Univ. Hamburg 4(1), 232–266 (1925)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wunderlich, W.: Zur Differenzengeometrie der Flächen konstanter negativer Krümmung Österreich. Akad. Wiss. Math.-Nat. Kl. S.-B. II(160), 39–77 (1951)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsThe University of New South WalesSydneyAustralia
  2. 2.Australian Research Council Centre of Excellence for Mathematics and Statistics of Complex Systems, School of Mathematics and StatisticsThe University of New South WalesSydneyAustralia

Personalised recommendations