Discrete & Computational Geometry

, Volume 56, Issue 3, pp 631–656 | Cite as

From Proximity to Utility: A Voronoi Partition of Pareto Optima

  • Hsien-Chih Chang
  • Sariel Har-Peled
  • Benjamin Raichel
Article

Abstract

We present an extension of Voronoi diagrams where when considering which site a client is going to use, in addition to the site distances, other site attributes are also considered (for example, prices or weights). A cell in this diagram is then the locus of all clients that consider the same set of sites to be relevant. In particular, the precise site a client might use from this candidate set depends on parameters that might change between usages, and the candidate set lists all of the relevant sites. The resulting diagram is significantly more expressive than Voronoi diagrams, but naturally has the drawback that its complexity, even in the plane, might be quite high. Nevertheless, we show that if the attributes of the sites are drawn from the same distribution (note that the locations are fixed), then the expected complexity of the candidate diagram is near linear. To this end, we derive several new technical results, which are of independent interest. In particular, we provide a high-probability, asymptotically optimal bound on the number of Pareto optima points in a point set uniformly sampled from the d-dimensional hypercube. To do so we revisit the classical backward analysis technique, both simplifying and improving relevant results in order to achieve the high-probability bounds.

Keywords

Voronoi diagrams Expected complexity Backward analysis Pareto optima Candidate diagram Clarkson-Shor technique 

References

  1. 1.
    Agarwal, P.K., Matoušek, J., Schwarzkopf, O.: Computing many faces in arrangements of lines and segments. SIAM J. Comput. 27(2), 491–505 (1998). http://epubs.siam.org/sam-bin/dbq/article/26616
  2. 2.
    Agarwal, P.K., Har-Peled, S., Kaplan, H., Sharir, M.: Union of random Minkowski sums and network vulnerability analysis. Discrete Comput. Geom. 52(3), 551–582 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Agarwal, P.K., Aronov, B., Har-Peled, S., Phillips, J.M., Yi, K., Zhang, W.: Nearest neighbor searching under uncertainty. II. In: Proceedings of the 32nd ACM Symposium on Principles of Database Systems (PODS), pp. 115–126 (2013)Google Scholar
  4. 4.
    Aurenhammer, F., Klein, R., Lee, D.T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific, Singapore (2013)CrossRefMATHGoogle Scholar
  5. 5.
    Aurenhammer, F., Schwarzkopf, O.: A simple on-line randomized incremental algorithm for computing higher order Voronoi diagrams. Int. J. Comput. Geom. Appl. 2, 363–381 (1992)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bai, Z., Devroye, L., Hwang, H., Tsai, T.: Maxima in hypercubes. Random Struct. Algorithms 27(3), 290–309 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bárány, I., Reitzner, M.: On the variance of random polytopes. Adv. Math. 225(4), 1986–2001 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bárány, I., Reitzner, M.: Poisson polytopes. Ann. Prob. 38(4), 1507–1531 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the average number of maxima in a set of vectors and applications. J. Assoc. Comput. Mach. 25(4), 536–543 (1978)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Berg, M., Cheong, O., Kreveld, M., Overmars, M.H.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008). http://www.cs.uu.nl/geobook/
  11. 11.
    Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th IEEE International Conference on Data Engineering, pp. 421–430 (2001). http://doi.ieeecomputersociety.org/10.1109/ICDE.2001.914855
  12. 12.
    Chang, H.C., Har-Peled, S., Raichel, B.: From proximity to utility: a Voronoi partition of Pareto optima. In: 31st International Symposium on Computational Geometry (SoCG 2015), vol. 34, pp. 689–703 (2015). doi:10.4230/LIPIcs.SOCG.2015.689. http://drops.dagstuhl.de/opus/volltexte/2015/5092
  13. 13.
    Chazelle, B., Friedman, J.: A deterministic view of random sampling and its use in geometry. Combinatorica 10(3), 229–249 (1990)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Clarkson, K.L.: On the expected number of \(k\)-sets of coordinate-wise independent points (2004). http://cm.bell-labs.com/who/clarkson/cwi_ksets/p.pdf. Manuscript
  15. 15.
    Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry. II. Discrete Comput. Geom. 4, 387–421 (1989). http://cm.bell-labs.com/who/clarkson/rs2m.html
  16. 16.
    Clarkson, K.L., Mehlhorn, K., Seidel, R.: Four results on randomized incremental constructions. Comput. Geom. Theory Appl. 3(4), 185–212 (1993)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Feldman, A.: Welfare economics. In: Durlauf, S., Blume, L. (eds.) The New Palgrave Dictionary of Economics. Palgrave Macmillan, New York (2008)Google Scholar
  18. 18.
    Godfrey, P., Shipley, R., Gryz, J.: Algorithms and analyses for maximal vector computation. VLDB J. 16(1), 5–28 (2007)CrossRefGoogle Scholar
  19. 19.
    Har-Peled, S.: Geometric Approximation Algorithms, Mathematical Surveys and Monographs, vol. 173. American Mathematical Society, Boston (2011)MATHGoogle Scholar
  20. 20.
    Har-Peled, S., Raichel, B.: On the expected complexity of randomly weighted Voronoi diagrams. In: Proceedings of the 30th Annual Symposium on Computational Geometry (SoCG), pp. 232–241 (2014). doi:10.1145/2582112.2582158
  21. 21.
    Haussler, D., Welzl, E.: \(\varepsilon \)-Nets and simplex range queries. Discrete Comput. Geom. 2, 127–151 (1987)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Hwang, H., Tsai, T., Chen, W.: Threshold phenomena in \(k\)-dominant skylines of random samples. SIAM J. Comput. 42(2), 405–441 (2013)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kung, H., Luccio, F., Preparata, F.: On finding the maxima of a set of vectors. J. Assoc. Comput. Mach. 22(4), 469–476 (1975)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Ottmann, T., Soisalon-Soininen, E., Wood, D.: On the definition and computation of rectlinear convex hulls. Inf. Sci. 33(3), 157–171 (1984)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Schneider, R., Wieacker, J.A.: Integral geometry. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry, vol. B, chap. 5.1, pp. 1349–1390. North-Holland, Amsterdam (1993)CrossRefGoogle Scholar
  26. 26.
    Seidel, R.: Backwards analysis of randomized geometric algorithms. In: Pach, J. (ed.) New Trends in Discrete and Computational Geometry, Algorithms and Combinatorics, vol. 10, pp. 37–68. Springer, New York (1993)CrossRefGoogle Scholar
  27. 27.
    Sharir, M.: The Clarkson–Shor technique revisited and extended. Comb. Prob. Comput. 12(2), 191–201 (2003)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York (1995). http://us.cambridge.org/titles/catalogue.asp?isbn=0521470250
  29. 29.
    Weil, W., Wieacker, J.A.: Stochastic geometry. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry, vol. B, chap. 5.2, pp. 1393–1438. North-Holland, Amsterdam (1993)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hsien-Chih Chang
    • 1
  • Sariel Har-Peled
    • 1
  • Benjamin Raichel
    • 2
  1. 1.Department of Computer ScienceUniversity of IllinoisUrbanaUSA
  2. 2.Department of Computer ScienceUniversity of Texas at DallasRichardsonUSA

Personalised recommendations