Discrete & Computational Geometry

, Volume 56, Issue 3, pp 727–742 | Cite as

Polytopes of Eigensteps of Finite Equal Norm Tight Frames

Article

Abstract

Hilbert space frames generalize orthonormal bases to allow redundancy in representations of vectors while keeping good reconstruction properties. A frame comes with an associated frame operator encoding essential properties of the frame. We study a polytope that arises in an algorithm for constructing all finite frames with given lengths of frame vectors and spectrum of the frame operator, which is a Gelfand–Tsetlin polytope. For equal norm tight frames, we give a non-redundant description of the polytope in terms of equations and inequalities. From this we obtain the dimension and number of facets of the polytope. While studying the polytope, we find two affine isomorphisms and show how they relate to operations on the underlying frames.

Keywords

Hilbert space frames Polytopes Convex geometry Combinatorics 

Mathematics Subject Classification

52B05 42C15 

References

  1. 1.
    Cahill, J., Fickus, M., Mixon, D.G., Poteet, M.J., Strawn, N.K.: Constructing finite frames of a given spectrum and set of lengths. Appl. Comput. Harmon. Anal. 35(1), 52–73 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cahill, J., Mixon, D.G., Strawn, N.: Connectivity and Irreducibility of Algebraic Varieties of Finite Unit Norm Tight Frames. Preprint (2016). arXiv:1311.4748v2
  3. 3.
    Casazza, P.G., Fickus, M., Mixon, D., Peterson, J., Smalyanau, I.: Every Hilbert space frame has a Naimark complement. J. Math. Anal. Appl. 406(1), 111–119 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Casazza, P.G., Kutyniok, G.: Finite Frames. Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2013)MATHGoogle Scholar
  5. 5.
    De Loera, J.A., McAllister, T.B.: Vertices of Gelfand–Tsetlin polytopes. Discrete Comput. Geom. 32(4), 459–470 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dykema, K., Strawn, N.: Manifold structure of spaces of spherical tight frames. Int. J. Pure. Appl. Math 28(2), 217–256 (2006)MathSciNetMATHGoogle Scholar
  7. 7.
    Fickus, M., Mixon, D.G., Poteet, M.J., Strawn, N.: Constructing all self-adjoint matrices with prescribed spectrum and diagonal. Adv. Comput. Math. 39(3–4), 585–609 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gelfand, I.M., Tsetlin, M.L.: Finite-dimensional representations of the group of unimodular matrices. Doklady Akad. Nauk SSSR 71, 825–828 (1950)MathSciNetGoogle Scholar
  9. 9.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Fachbereich Mathematik/InformatikUniversität BremenBremenGermany

Personalised recommendations