Advertisement

Discrete & Computational Geometry

, Volume 56, Issue 4, pp 860–865 | Cite as

A Simpler Linear-Time Algorithm for Intersecting Two Convex Polyhedra in Three Dimensions

  • Timothy M. Chan
Article
  • 197 Downloads

Abstract

Chazelle [SIAM J Comput 21(4):671–696, 1992] gave a linear-time algorithm to compute the intersection of two convex polyhedra in three dimensions. We present a simpler algorithm to do the same.

Keywords

Convex polyhedra Intersection Dobkin–Kirkpatrick hierarchy 

Notes

Acknowledgments

The author thanks Stefan Langerman for discussion on these problems.

References

  1. 1.
    Amato, N.M., Goodrich, M.T., Ramos, E.A.: A randomized algorithm for triangulating a simple polygon in linear time. Discrete Comput. Geom. 26(2), 245–265 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chan, T.M.: Deterministic algorithms for 2-D convex programming and 3-D online linear programming. J. Algorithms 27(1), 147–166 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6, 485–524 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chazelle, B.: An optimal algorithm for intersecting three-dimensional convex polyhedra. SIAM J. Comput. 21(4), 671–696 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Clarkson, K.L., Shor, P.W.: Application of random sampling in computational geometry. II. Discrete Comput. Geom. 4, 387–421 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dobkin, D.P., Kirkpatrick, D.G.: A linear algorithm for determining the separation of convex polyhedra. J. Algorithms 6(3), 381–392 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dobkin, D.P., Kirkpatrick, D.G.: Determining the separation of preprocessed polyhedra—A unified approach. In: Proceedings of the 17th International Colloquium on Automata, Languages and Programming, pp. 400–413 (1990)Google Scholar
  8. 8.
    Dyer, M., Megiddo, N., Welzl, E.: Linear programming. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, Chapter 45, 2nd edn. CRC Press, New York (2004)Google Scholar
  9. 9.
    Kirkpatrick, D.G.: Efficient computation of continuous skeletons. In: Proceedings of the 20th Annual Symposium on Foundations of Computer Science, pp. 18–27 (1979)Google Scholar
  10. 10.
    Kirkpatrick, D.G.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1), 28–35 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Martin, A.K.: A simple primal algorithm for intersecting 3-polyhedra in linear time. Master’s thesis, Department of Computer Science, University of British Columbia. https://circle.ubc.ca/handle/2429/30114 or http://www.cs.ubc.ca/cgi-bin/tr/1991/TR-91-16 (1991)
  12. 12.
    Mulmuley, K.: Computational Geometry: An Introduction Through Randomized Algorithms. Prentice Hall, Englewood Cliffs (1993)zbMATHGoogle Scholar
  13. 13.
    Preparata, F.P., Hong, S.J.: Convex hulls of finite sets of points in two and three dimensions. Commun. ACM 20(2), 87–93 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Shamos M.I., Hoey D.: Closest-point problems. In: Proceedings of the 16th Annual Symposium on Foundations of Computer Science, pp. 151–162 (1975)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations