Discrete & Computational Geometry

, Volume 56, Issue 1, pp 181–215 | Cite as

Quantum Jumps of Normal Polytopes

  • Winfried Bruns
  • Joseph Gubeladze
  • Mateusz Michałek
Article
  • 130 Downloads

Abstract

We introduce a partial order on the set of all normal polytopes in \(\mathbb R^d\). This poset \({{\mathsf {NPol}}}(d)\) is a natural discrete counterpart of the continuum of convex compact sets in \(\mathbb R^d\), ordered by inclusion, and exhibits a remarkably rich combinatorial structure. We derive various arithmetic bounds on elementary relations in \({{\mathsf {NPol}}}(d)\), called quantum jumps. The existence of extremal objects in \({{\mathsf {NPol}}}(d)\) is a challenge of number theoretical flavor, leading to interesting classes of normal polytopes: minimal, maximal, spherical. Minimal elements in \({{\mathsf {NPol}}}(5)\) have played a critical role in disproving various covering conjectures for normal polytopes in the 1990s. Here we report on the first examples of maximal elements in \({{\mathsf {NPol}}}(4)\) and \({{\mathsf {NPol}}}(5)\), found by a combination of the developed theory, random generation, and extensive computer search.

Keywords

Lattice polytope Normal polytope Maximal polytope Quantum jump 

Mathematics Subject Classification

Primary 52B20 Secondary 11H06 52C07 

References

  1. 1.
    Beck, M., Delgado, J., Gubeladze, J., Michałek, M.: Very ample and Koszul segmental fibrations. J. Algebr. Comb. 42, 165–182 (2015)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bruns, W.: On the integral Carathéodory property. Exp. Math. 16, 359–365 (2007)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bruns, W., Gubeladze, J.: Normality and covering properties of affine semigroups. J. Reine Angew. Math. 510, 161–178 (1999)MATHMathSciNetGoogle Scholar
  4. 4.
    Bruns, W., Gubeladze, J.: Rectangular simplicial semigroups. In: Commutative Algebra, Algebraic Geometry, and Computational Methods (Hanoi, 1996), pp. 201–213. Springer, Singapore (1999)Google Scholar
  5. 5.
    Bruns, W., Gubeladze, J.: Polytopes, Rings, and \(K\)-theory. Springer Monographs in Mathematics. Springer, New York (2009)MATHGoogle Scholar
  6. 6.
    Bruns, W., Gubeladze, J., Henk, M., Martin, A., Weismantel, R.: A counterexample to an integer analogue of Carathéodory’s theorem. J. Reine Angew. Math. 510, 179–185 (1999)MATHMathSciNetGoogle Scholar
  7. 7.
    Bruns, W., Ichim, B., Tim, R., Christof, S.: \({\sf Normaliz}\). http://www.math.uos.de/normaliz/
  8. 8.
    Cook, W., Fonlupt, J., Schrijver, A.: An integer analogue of Carathéodory’s theorem. J. Comb. Theory, Ser. B 40(1), 63–70 (1986)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Cox, D.A., Haase, C., Hibi, T., Higashitani, A.: Integer decomposition property of dilated polytopes. Electron. J. Comb. 21(4) (2014)Google Scholar
  10. 10.
    Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence, RI (2011)MATHGoogle Scholar
  11. 11.
    Gubeladze, J.: Normal polytopes. In: Proceedings of 22nd International Conference on Formal Power Series and Algebraic Combinatorics, San Francisco, pp. 4–8 (2010). http://math.sfsu.edu/fpsac/local_proceedings.pdf
  12. 12.
    Gubeladze, J.: Convex normality of rational polytopes with long edges. Adv. Math. 230, 372–389 (2012)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Haase, C., Maclagan, D., Hibi, T.: Miniworkshop: Projective Normality of Smooth Toric Varieties (2007). Oberwolfach Reports, 39/2007Google Scholar
  14. 14.
    Haase, C., Paffenholz, A., Piechnik, L., Santos, F.: Existence of unimodular triangulations—positive results. Preprint. http://arxiv.org/abs/1405.1687
  15. 15.
    Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Graduate Texts in Mathematics, vol. 227. Springer, New York (2005)MATHGoogle Scholar
  16. 16.
    Payne, S.: Lattice polytopes cut out by root systems and the Koszul property. Adv. Math. 220, 926–935 (2009)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Sebö, A.: Hilbert bases, Carathéodory’s theorem and combinatorial optimization. In: Proceedings of the IPCO Conference, Waterloo, pp. 431–455 (1990)Google Scholar
  18. 18.
    White, G.K.: Lattice tetrahedra. Can. J. Math. 16, 389–396 (1964)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institut für MathematikUniversität OsnabrückOsnabrückGermany
  2. 2.Department of MathematicsSan Francisco State UniversitySan FranciscoUSA
  3. 3.Institut für MathematikFreie UniversitätBerlinGermany
  4. 4.Polish Academy of SciencesWarsawPoland

Personalised recommendations