Discrete & Computational Geometry

, Volume 54, Issue 4, pp 871–904 | Cite as

Kinetic Voronoi Diagrams and Delaunay Triangulations under Polygonal Distance Functions

  • Pankaj K. Agarwal
  • Haim Kaplan
  • Natan RubinEmail author
  • Micha Sharir


Let P be a set of n points and Q a convex k-gon in \({\mathbb {R}}^2\). We analyze in detail the topological (or discrete) changes in the structure of the Voronoi diagram and the Delaunay triangulation of P, under the convex distance function defined by Q, as the points of P move along prespecified continuous trajectories. Assuming that each point of P moves along an algebraic trajectory of bounded degree, we establish an upper bound of \(O(k^4n\lambda _r(n))\) on the number of topological changes experienced by the diagrams throughout the motion; here \(\lambda _r(n)\) is the maximum length of an (nr)-Davenport–Schinzel sequence, and r is a constant depending on the algebraic degree of the motion of the points. Finally, we describe an algorithm for efficiently maintaining the above structures, using the kinetic data structure (KDS) framework.


Delaunay triangulation Voronoi diagram Moving points Discrete changes Convex distance function Kinetic data structure 



Work by P.A. and M.S. was supported by Grant 2012/229 from the U.S.–Israel Binational Science Foundation. Work by P.A. was also supported by NSF under Grants CCF-09-40671, CCF-10-12254, and CCF-11-61359, by an ARO contract W911NF-13-P-0018, and by an ERDC contract W9132V-11-C-0003. Work by H.K. has been supported by Grant 822/10 from the Israel Science Foundation, Grant 1161/2011 from the German-Israeli Science Foundation, and by the Israeli Centers for Research Excellence (I-CORE) program (center no. 4/11). Work by N.R. was partially supported by Grants 975/06 and 338/09 from the Israel Science Fund, by Minerva Fellowship Program of the Max Planck Society, by the Fondation Sciences Mathématiques de Paris (FSMP), and by a public grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (reference: ANR-10-LABX-0098). Work by M. S. has also been supported by NSF Grant CCF-08-30272, by Grants 338/09 and 892/13 from the Israel Science Foundation, by the Israeli Centers for Research Excellence (I-CORE) program (center no. 4/11), and by the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University.


  1. 1.
    Abam, M.A., de Berg, M.: Kinetic spanners in \(R^d\). Discrete Comput. Geom. 45, 723–736 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Agarwal, P.K., Gao, J., Guibas, L., Kaplan, H., Koltun, V., Rubin, N., Sharir, M.: Kinetic stable Delaunay graphs. In: Proceedings of the 26th Annual Symposium on Computational Geometry, 2010, pp. 127–136. Also in CoRR (2011). arXiv:1104.0622
  3. 3.
    Agarwal, P.K., Gao, J., Guibas, L., Kaplan, H., Rubin, N., Sharir, M.: Stable Delaunay graphs. Discrete Comput. Geom (2015). doi: 10.1007/s00454-015-9730-x
  4. 4.
    Aurenhammer, F., Klein, R., Lee, D.-T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific, Singapore (2013)CrossRefGoogle Scholar
  5. 5.
    Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. J. Algorithms 31, 1–28 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer-Verlag, Berlin (2008)CrossRefGoogle Scholar
  7. 7.
    Boissonnat, J.-D., Sharir, M., Tagansky, B., Yvinec, M.: Voronoi diagrams in higher dimensions under certain polyhedral distance functions. Discrete Comput. Geom. 19, 485–519 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chew, L.P.: Near-quadratic bounds for the \(L_1\)-Voronoi diagram of moving points. Comput. Geom. Theory Appl. 7, 73–80 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chew, L.P., Drysdale, R.L.: Voronoi diagrams based on convex distance functions. In: Proceedings of the 1st Annual Symposium on Computational Geometry, pp. 235–244 (1985)Google Scholar
  10. 10.
    Drysdale III, R.L.: A practical algorithm for computing the Delaunay triangulation for convex distance functions. In: Proceedings of the 1st Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 159–168 (1990)Google Scholar
  11. 11.
    Fogel, E., Halperin, D., Wein, R.: CGAL Arrangements and Their Applications: A Step-by-step Guide. Springer-Verlag, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Guibas, L.J.: Modeling motion. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn, pp. 1117–1134. CRC Press, Boca Raton (2004)Google Scholar
  13. 13.
    Guibas, L.J., Mitchell, J.S.B., Roos, T.: Voronoi diagrams of moving points in the plane. In: Proceedings of International Workshop on Graph-Theoretic Concepts in Computer Science, pp. 113–125 (1992)Google Scholar
  14. 14.
    Hwang, F.K.: An \(O(n \log n)\) algorithm for rectilinear minimal spanning trees. J. ACM 26, 177–182 (1979)CrossRefzbMATHGoogle Scholar
  15. 15.
    Icking, C., Klein, R., Lê, N.-M., Ma, L.: Convex distance functions in 3-space are different. Fundam. Inform. 22(4), 331–352 (1995)zbMATHGoogle Scholar
  16. 16.
    Kedem, K., Livne, R., Pach, J., Sharir, M.: On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discrete Comput. Geom. 1, 59–70 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Koltun, V., Sharir, M.: Polyhedral Voronoi diagrams of polyhedra in three dimensions. Discrete Comput. Geom. 31, 83–124 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lee, D.-T.: Two-dimensional Voronoi diagrams in the \(L_p\)-metric. J. ACM 27, 604–618 (1980)CrossRefzbMATHGoogle Scholar
  19. 19.
    Lee, D.-T., Wong, C.K.: Voronoi diagrams in \(L_1\) (\(L_\infty \)) metrics with 2-dimensional storage applications. SIAM J. Comput. 9, 200–211 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Leven, D., Sharir, M.: Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams. Discrete Comput. Geom. 2, 9–31 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ma, L.: Bisectors and Voronoi diagrams for convex distance functions. PhD Thesis, Fern University, Hagen (2000).
  22. 22.
    Rubin, N.: On topological changes in the Delaunay triangulation of moving points. Discrete Comput. Geom. 49(4), 710–746 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Rubin, N.: On kinetic Delaunay triangulations: A near quadratic bound for unit speed motions. In: Proceedings of 54th Annual IEEE Symposium on Foundations of Computer Science, pp. 519–528 (2013). Also in J. ACM, to appearGoogle Scholar
  24. 24.
    Sharir, M., Agarwal, P.K.: Davenport–Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York (1995)zbMATHGoogle Scholar
  25. 25.
    Skyum, S.: A sweepline algorithm for generalized Delaunay triangulations. Technical Report, DAIMI PB-373, Computer Science Department, Aarhus University, Aarhus (1991)Google Scholar
  26. 26.
    Widmayer, P., Wu, Y.-F., Wong, C.K.: On some distance problems in fixed orientations. SIAM J. Comput. 16, 728–746 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yap, C.K.: A geometric consistency theorem for a symbolic perturbation scheme. J. Comput. Syst. Sci. 40, 2–18 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Pankaj K. Agarwal
    • 1
  • Haim Kaplan
    • 2
  • Natan Rubin
    • 3
    Email author
  • Micha Sharir
    • 2
  1. 1.Department of Computer ScienceDuke UniversityDurhamUSA
  2. 2.School of Computer ScienceTel Aviv UniversityTel AvivIsrael
  3. 3.Department of Computer ScienceBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations