Discrete & Computational Geometry

, Volume 54, Issue 2, pp 368–389 | Cite as

Flip Distance Between Triangulations of a Simple Polygon is NP-Complete

  • Oswin Aichholzer
  • Wolfgang Mulzer
  • Alexander Pilz
Article

Abstract

Let T be a triangulation of a simple polygon. A flip in T is the operation of replacing one diagonal of T by a different one such that the resulting graph is again a triangulation. The flip distance between two triangulations is the smallest number of flips required to transform one triangulation into the other. For the special case of convex polygons, the problem of determining the shortest flip distance between two triangulations is equivalent to determining the rotation distance between two binary trees, a central problem which is still open after over 25 years of intensive study. We show that computing the flip distance between two triangulations of a simple polygon is NP-hard. This complements a recent result that shows APX-hardness of determining the flip distance between two triangulations of a planar point set.

Keywords

Triangulations Flip distance Simple polygon 

Mathematics Subject Classification

68U05 

References

  1. 1.
    Abel, Z., Ballinger, B., Bose, P., Collette, S., Dujmović, V., Hurtado, F., Kominers, S., Langerman, S., Pór, A., Wood, D.: Every large point set contains many collinear points or an empty pentagon. Graphs Comb. 27, 47–60 (2011)CrossRefGoogle Scholar
  2. 2.
    Aichholzer, O., Mulzer, W., Pilz, A.: Flip distance between triangulations of a simple polygon is NP-complete. In: Proceedings of 29th European Workshop on Computational Geometry, pp. 115–118. EWCG, Braunschweig (2013)Google Scholar
  3. 3.
    Aichholzer, O., Mulzer, W., Pilz, A.: Flip distance between triangulations of a simple polygon is NP-complete. In: Bodlaender, H.L., Italiano, G.F. (eds.) Algorithms—ESA 2013—21st Annual European Symposium, Sophia Antipolis, France, 2–4 September 2013. Lecture Notes in Computer Science, vol. 8125, pp. 13–24. Springer, Heidelberg (2013)Google Scholar
  4. 4.
    Bose, P., Hurtado, F.: Flips in planar graphs. Comput. Geom. 42(1), 60–80 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Canny, J.F., Donald, B.R., Ressler, E.K.: A rational rotation method for robust geometric algorithms. In: Proceedings of 8th Annual ACM Symposium on Computational Geometry (SoCG 1992), pp. 251–260. ACM Press, New York (1992)Google Scholar
  6. 6.
    Chazelle, B., Guibas, L.J., Lee, D.T.: The power of geometric duality. BIT 25(1), 76–90 (1985)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Culik II, K., Wood, D.: A note on some tree similarity measures. Inf. Process. Lett. 15(1), 39–42 (1982)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Edelsbrunner, H., O’Rourke, J., Seidel, R.: Constructing arrangements of lines and hyperplanes with applications. SIAM J. Comput. 15(2), 341–363 (1986)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Eppstein, D.: Happy endings for flip graphs. J. Comput. Geom. 1(1), 3–28 (2010)MathSciNetGoogle Scholar
  10. 10.
    Hanke, S., Ottmann, T., Schuierer, S.: The edge-flipping distance of triangulations. J. UCS 2(8), 570–579 (1996)MathSciNetGoogle Scholar
  11. 11.
    Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discrete Comput. Geom. 22, 333–346 (1999)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Husemöller, D.: Elliptic Curves. Graduate Texts in Mathematics. Springer-Verlag, New York (2003)Google Scholar
  13. 13.
    Hwang, F., Richards, D., Winter, P.: The Steiner Tree Problem. Annals of Discrete Mathematics. North-Holland, Amsterdam (1992)Google Scholar
  14. 14.
    Kanj, I.A., Xia, G.: Flip distance is in FPT time \(O(n+ k \cdot c^k)\). (2014). http://arxiv.org/abs/1407.1525
  15. 15.
    Lawson, C.L.: Transforming triangulations. Discrete Math. 3(4), 365–372 (1972)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lawson, C.L.: Software for \(C^1\) surface interpolation. In: Rice, J.R. (ed.) Mathematical Software III, pp. 161–194. Academic Press, New York (1977)Google Scholar
  17. 17.
    Lu, B., Ruan, L.: Polynomial time approximation scheme for the rectilinear Steiner arborescence problem. J. Comb. Optim. 4(3), 357–363 (2000)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lubiw, A., Pathak, V.: Flip distance between two triangulations of a point-set is NP-complete. In: Proceedings of 24th Canadian Conference on Computational Geometry (CCCG), pp. 127–132. CCCG, Charlottetown (2012)Google Scholar
  19. 19.
    Pilz, A.: Flip distance between triangulations of a planar point set is APX-hard. Comput. Geom. 47(5), 589–604 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Rao, S.K., Sadayappan, P., Hwang, F.K., Shor, P.W.: The rectilinear Steiner arborescence problem. Algorithmica 7, 277–288 (1992)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Shi, W., Su, C.: The rectilinear Steiner arborescence problem is NP-complete. In: Proceedings of 11th Symposium on Discrete Algorithms (SODA), pp. 780–787. SODA, San Francisco (2000)Google Scholar
  22. 22.
    Sleator, D., Tarjan, R., Thurston, W.: Rotation distance, triangulations and hyperbolic geometry. J. Am. Math. Soc. 1, 647–682 (1988)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Trubin, V.: Subclass of the Steiner problems on a plane with rectilinear metric. Cybernetics 21, 320–324 (1985)CrossRefGoogle Scholar
  24. 24.
    Urrutia, J.: Algunos problemas abiertos. In: Proceedings of IX Encuentros de Geometría Computacional, pp. 13–24. Universitat de Girona, Girona (2001)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Oswin Aichholzer
    • 1
  • Wolfgang Mulzer
    • 2
  • Alexander Pilz
    • 1
  1. 1.Institute for Software TechnologyGraz University of TechnologyGrazAustria
  2. 2.Institut für InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations