Advertisement

Discrete & Computational Geometry

, Volume 54, Issue 1, pp 259–289 | Cite as

Free Edge Lengths in Plane Graphs

  • Zachary Abel
  • Robert Connelly
  • Sarah Eisenstat
  • Radoslav Fulek
  • Filip Morić
  • Yoshio Okamoto
  • Tibor Szabó
  • Csaba D. Tóth
Article
  • 139 Downloads

Abstract

We study the impact of metric constraints on the realizability of planar graphs. Let G be a subgraph of a planar graph H (where H is the “host” of G). The graph G is free in H if for every choice of positive lengths for the edges of G, the host H has a planar straight-line embedding that realizes these lengths; and G is extrinsically free in H if all constraints on the edge lengths of G depend on G only, irrespective of additional edges of the host H. We characterize the planar graphs G that are free in every host H, \(G\subseteq H\), and all the planar graphs G that are extrinsically free in every host H, \(G\subseteq H\). The case of cycles \(G=C_k\) provides a new version of the celebrated carpenter’s rule problem. Even though cycles \(C_k\), \(k\ge 4\), are not extrinsically free in all triangulations, it turns out that “nondegenerate” edge lengths are always realizable, where the edge lengths are considered degenerate if the cycle can be flattened (into a line) in two different ways. Separating triangles, and separating cycles in general, play an important role in our arguments. We show that every star is free in a 4-connected triangulation (which has no separating triangle).

Keywords

Geometric graph Graph embedding Bar-and-joint framework 

Notes

Acknowledgments

The work on this problem started at the 10th Gremo Workshop on Open Problems (Bergün, GR, Switzerland) and continued at the MIT-Tufts Research Group on Computational Geometry. We thank all participants of these meetings for stimulating discussions.

References

  1. 1.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Roselli, V.: Morphing planar graph drawings optimally. In: Proceedings of the 41st International Colloquium on Automata, Languages, and Programming (ICALP), Part I. Lecture Notes in Computer Science 8572, pp. 126–137. Springer, New York (2014)Google Scholar
  2. 2.
    Angelini, P., Di Battista, G., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing planarity of partially embedded graphs. ACM Transactions on Algorithms 11(4), Art No. 32 (2015)Google Scholar
  3. 3.
    Cabello, S., Demaine, E.D., Rote, G.: Planar embeddings of graphs with specified edge lengths. J. Graph Algorithms Appl. 11(1), 259–276 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Connelly, R.: Generic global rigidity. Discrete Comput. Geom. 33(4), 549–563 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Connelly, R., Demaine, E.D., Rote, G.: Straightening polygonal arcs and convexifying polygonal cycles. Discrete Comput. Geom. 30(2), 205–239 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Di Battista, G., Vismara, L.: Angles of planar triangular graphs. SIAM J. Discrete Math. 9(3), 349–359 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Eades, P., Wormald, N.C.: Fixed edge-length graph drawing is NP-hard. Discrete Appl. Math. 28, 111–134 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Fáry, I.: On straight line representation of plane graphs. Acta. Sci. Math. Szeged 11, 229–233 (1948)zbMATHGoogle Scholar
  10. 10.
    Frati, F., Patrignani, M.: A note on minimum-area straight-line drawings of planar graphs. In: 15th Graph Drawing. Lecture Notes in Computer Science 4875, pp. 339–344. Springer, New York (2008)Google Scholar
  11. 11.
    Hong, S.-H., Nagamochi, H.: Convex drawings of graphs with non-convex boundary constraints. Discrete Appl. Math. 156, 2368–2380 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Jackson, B., Jordán, T.: Connected rigidity matroids and unique realizations of graphs. J. Comb. Theory Ser. B 94(1), 1–29 (2005)CrossRefzbMATHGoogle Scholar
  13. 13.
    Jelínek, V., Kratochvíl, J., Rutter, I.: A Kuratowski-type theorem for planarity of partially embedded graphs. Comput. Geom. Theory Appl. 46(4), 466–492 (2013)CrossRefzbMATHGoogle Scholar
  14. 14.
    Kurowski, M.: Planar straight-line drawing in an \(O(n)\times O(n)\) grid with angular resolution \(\Omega (1/n)\). In: Proceedings of the 31st Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM). Lecture Notes in Computer Science 3381, pp. 250–258. Springer, New York (2005)Google Scholar
  15. 15.
    Lenhart, W.J., Whitesides, S.H.: Reconfiguring closed polygonal chains in euclidean \(d\)-space. Discrete Comput. Geom. 13, 123–140 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Patrignani, M.: On extending a partial straight-line drawing. Found. Comput. Sci. 17(5), 1061–1069 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Sauer, N.W.: Distance sets of Urysohn metric spaces. Can. J. Math. 65, 222–240 (2013)CrossRefzbMATHGoogle Scholar
  18. 18.
    Sauer, N.W.: Edge labelled graphs and metric spaces. In: Abstracts of the Erdős Centennial, p. 78. Budapest (2013)Google Scholar
  19. 19.
    Schnyder, W.: Embedding planar graphs in the grid. In: Proceedings of the 1st ACM-SIAM Symposium on Discrete Algorithms, pp. 138–147. ACM, San Francisco (1990)Google Scholar
  20. 20.
    Tutte, W.T.: How to draw a graph. Proc. Lond. Math. Soc. 3–13(1), 743–767 (1963)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Zachary Abel
    • 1
  • Robert Connelly
    • 2
  • Sarah Eisenstat
    • 1
  • Radoslav Fulek
    • 3
  • Filip Morić
    • 4
  • Yoshio Okamoto
    • 5
  • Tibor Szabó
    • 6
  • Csaba D. Tóth
    • 7
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Cornell UniversityIthacaUSA
  3. 3.Columbia UniversityNew YorkUSA
  4. 4.École Polytechnique Fédérale de LausanneLausanneSwitzerland
  5. 5.University of Electro-CommunicationsTokyoJapan
  6. 6.Freie Universität BerlinBerlinGermany
  7. 7.California State University NorthridgeLos AngelesUSA

Personalised recommendations