Advertisement

Discrete & Computational Geometry

, Volume 54, Issue 1, pp 152–181 | Cite as

A \(d\)-dimensional Extension of Christoffel Words

  • Sébastien Labbé
  • Christophe Reutenauer
Article

Abstract

In this article, we extend the definition of Christoffel words to directed subgraphs of the hypercubic lattice in an arbitrary dimension that we call Christoffel graphs. Christoffel graphs, when \(d=2\), correspond to the well-known Christoffel words. Due to periodicity, the \(d\)-dimensional Christoffel graph can be embedded in a \((d-1)\)-torus (a parallelogram when \(d=3\)). We show that Christoffel graphs have similar properties to those of Christoffel words: symmetry of their central part and conjugation with their reversal. Our main result extends Pirillo’s theorem (characterization of Christoffel words which asserts that a word \(amb\) is a Christoffel word if and only if it is conjugate to \(bma\)) to an arbitrary dimension. In the generalization, the map \(amb\mapsto bma\) is seen as a flip operation on graphs embedded in \(\mathbb {Z}^d\) and the conjugation is a translation. We show that a fully periodic subgraph of the hypercubic lattice is a translation of its flip if and only if it is a Christoffel graph.

Keywords

Christoffel words Christoffel graphs Digital hyperplane Flip Hypercubic lattice Pirillo’s theorem 

Mathematics Subject Classification

05C75 52C35 68R15 

Notes

Acknowledgments

We wish to thank the anonymous referee for his many valuable comments and for having noticed that Lemma 13 was missing. Both authors acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC). The first author acknowledges support from the ANR project Dyna3S (ANR-13-BS02-0003). Sage open source software was used to generate tikz code to create the artwork.

References

  1. 1.
    Andres, E., Raj, A., Claudio, S.: Discrete analytical hyperplanes. Graph. Models Image Process. 59(5), 302–309 (1997)CrossRefGoogle Scholar
  2. 2.
    Arnoux, P., Berthé, V., Ei, H., Ito, S.: Tilings, quasicrystals, discrete planes, generalized substitutions, and multidimensional continued fractions. Discrete Models: Combinatorics, Computation, and Geometry (Paris, 2001). Discrete Mathematics & Theoretical Computer Science Proceedings, AA, pp. 059–078. Maison Inform. Math. Discrèt. (MIMD), Paris (2001)Google Scholar
  3. 3.
    Arnoux, P., Berthé, V., Ito, S.: Discrete planes, \({\mathbb{Z}}^2\)-actions, Jacobi–Perron algorithm and substitutions. Ann. Inst. Fourier (Grenoble) 52(2), 305–349 (2002)Google Scholar
  4. 4.
    Arnoux, P., Berthé, V., Fernique, T., Jamet, D.: Functional stepped surfaces, flips, and generalized substitutions. Theor. Comput. Sci. 380(3), 251–265 (2007). doi: 10.1016/j.tcs.2007.03.031 CrossRefzbMATHGoogle Scholar
  5. 5.
    Berstel, J.: Sturmian and episturmian words. In: Bozapalidis, S., Rahonis, G. (eds.) Algebraic Informatics. Lecture Notes in Computer Science, vol. 4728, pp. 23–47. Springer, Berlin (2007). doi: 10.1007/978-3-540-75414-5_2
  6. 6.
    Berstel, J., Lauve, A., Reutenauer, C., Saliola, F.: Combinatorics on Words: Christoffel Words and Repetition in Words. CRM Monograph Series, vol. 27. American Mathematical Society, Providence, RI (2008)Google Scholar
  7. 7.
    Berthé, V., Tijdeman, R.: Lattices and multi-dimensional words. Theor. Comput. Sci. 319(1–3), 177–202 (2004). doi: 10.1016/j.tcs.2004.02.016 CrossRefzbMATHGoogle Scholar
  8. 8.
    Berthé, V., Vuillon, L.: Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences. Discrete Math. 223(1–3), 27–53 (2000). doi: 10.1016/S0012-365X(00)00039-X CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Bodini, O., Fernique, T., Rémila, É.: A characterization of flip-accessibility for rhombus tilings of the whole plane. Inf. Comput. 206(9–10), 1065–1073 (2008). doi: 10.1016/j.ic.2008.03.008 CrossRefzbMATHGoogle Scholar
  10. 10.
    Bodini, O., Fernique, T., Rao, M., Rémila, É.: Distances on rhombus tilings. Theor. Comput. Sci. 412(36), 4787–4794 (2011). doi: 10.1016/j.tcs.2011.04.015 CrossRefzbMATHGoogle Scholar
  11. 11.
    Borel, J.P., Reutenauer, C.: On Christoffel classes. Theor. Inform. Appl. 40(1), 15–27 (2006). doi: 10.1051/ita:2005038 CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Brimkov, V., Coeurjolly, D., Klette, R.: Digital planarity—a review. Discrete Appl. Math. 155(4), 468–495 (2007). doi: 10.1016/j.dam.2006.08.004 CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Brlek, S., Hamel, S., Nivat, M., Reutenauer, C.: On the palindromic complexity of infinite words. Int. J. Found. Comput. Sci. 15(2), 293–306 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Carpi, A., Luca, A.: Central Sturmian words: recent developments. In: Felice, C., Restivo, A. (eds.) Developments in Language Theory. Lecture Notes in Computer Science, vol. 3572, pp. 36–56. Springer, Berlin (2005). doi: 10.1007/11505877_4
  15. 15.
    Chuan, W.F.: \(\alpha \)-Words and factors of characteristic sequences. Discrete Math. 177(1–3), 33–50 (1997). doi: 10.1016/S0012-365X(96)00355-X CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Debled-Rennesson, I.: Reconnaissance des droites et plans discrets. Université Louis Pasteur - Strasbourg, Thèse de Doctorat (1995)Google Scholar
  17. 17.
    Domenjoud, E., Vuillon, L.: Geometric palindromic closure. Unif. Distrib. Theory 7(2), 109–140 (2012)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Fernique, T.: Pavages, fractions continues et géométrie discrète. Thèse de Doctorat, Université Montpellier 2 (2007). http://tel.archives-ouvertes.fr/tel-00206966
  19. 19.
    Françon, J.: Sur la topologie d’un plan arithmétique. Theor. Comput. Sci. 156(1–2), 159–176 (1996). doi: 10.1016/0304-3975(95)00059-3 CrossRefzbMATHGoogle Scholar
  20. 20.
    Françon, J., Schramm, M., Tajine, M.: Recognizing arithmetic straight lines and planes. Discrete Geometry for Computer Imagery (Lyon, 1996). Lecture Notes in Computer Science, vol. 1176, pp. 141–150. Springer, Berlin (1996)Google Scholar
  21. 21.
    Ito, S., Ohtsuki, M.: Modified Jacobi–Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms. Tokyo J. Math. 16(2), 441–472 (1993). doi: 10.3836/tjm/1270128497 CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Ito, S., Ohtsuki, M.: Parallelogram tilings and Jacobi–Perron algorithm. Tokyo J. Math. 17(1), 33–58 (1994). doi: 10.3836/tjm/1270128186 CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Pirillo, G.: A curious characteristic property of standard Sturmian words. Algebraic Combinatorics and Computer Science, pp. 541–546. Springer, Milan (2001)CrossRefGoogle Scholar
  24. 24.
    Provot, L., Buzer, L., Debled-Rennesson, I.: Recognition of blurred pieces of discrete planes. In: Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science, vol. 4245, pp. 65–76. Springer, Berlin (2006). doi: 10.1007/11907350_6
  25. 25.
    Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse de Doctorat, Université Louis Pasteur, Strasbourg (1991)Google Scholar
  26. 26.
    Reveillès, J.P.: Combinatorial pieces in digital lines and planes. In: Vision Geometry, IV (San Diego, CA, 1995). Proceedings of SPIE, vol. 2573, pp. 23–34. SPIE, Bellingham (1995). doi: 10.1117/12.216425
  27. 27.
    Vuillon, L.: Local configurations in a discrete plane. Bull. Belg. Math. Soc. Simon Stevin 6(4), 625–636 (1999)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Laboratoire d’Informatique Algorithmique: Fondements et ApplicationsUniversité Paris Diderot - Paris 7Paris Cedex 13France
  2. 2.Laboratoire de Combinatoire et d’Informatique MathématiqueUniversité du Québec à MontréalMontréalCanada

Personalised recommendations