Discrete & Computational Geometry

, Volume 53, Issue 4, pp 675–690 | Cite as

Counting Triangulations and Other Crossing-Free Structures via Onion Layers

  • Victor Alvarez
  • Karl Bringmann
  • Radu Curticapean
  • Saurabh Ray
Article

Abstract

Let \(P\) be a set of \(n\) points in the plane. A crossing-free structure on \(P\) is a straight-edge plane graph with vertex set \(P\). Examples of crossing-free structures include triangulations and spanning cycles, also known as polygonalizations. In recent years, there has been a large amount of research trying to bound the number of such structures; in particular, bounding the number of (crossing-free) triangulations spanned by \(P\) has received considerable attention. It is currently known that every set of \(n\) points has at most O\((30^{n})\) and at least \(\Omega (2.43^{n})\) triangulations. However, much less is known about the algorithmic problem of counting crossing-free structures of a given set \(P\). In this paper, we develop a general technique for computing the number of crossing-free structures of an input set \(P\). We apply the technique to obtain algorithms for computing the number of triangulations, matchings, and spanning cycles of \(P\). The running time of our algorithms is upper-bounded by \(n^{\mathrm{O}(k)}\), where \(k\) is the number of onion layers of \(P\). In particular, for \(k = \hbox {O}(1)\) our algorithms run in polynomial time. Additionally, we show that our algorithm for counting triangulations in the worst case over all \(k\) takes time O\(^{*}(3.1414^{n})\). [In the notations \(\Omega ^{*}(\cdot ), \hbox {O}^{*}(\cdot )\), and \(\Theta ^{*}(\cdot )\), we neglect polynomial terms and we just present the dominating exponential term.] Given that there are several well-studied configurations of points with at least \(\Omega (3.47^{n})\) triangulations, and some even with \(\Omega (8.65^{n})\) triangulations, our algorithm asymptotically outperforms any enumeration algorithm for such instances. We also show that our techniques are general enough to solve the Restricted-Triangulation-Counting-Problem, which we prove to be \(W[2]\)-hard in the parameter \(k\). This implies that in order to be fixed-parameter tractable, our general algorithm must rely on additional properties that are specific to the considered class of crossing-free structures.

Keywords

Triangulations Crossing-free structures Algorithmic geometry Counting algorithms Matchings Spanning cycles Spanning trees 

References

  1. 1.
    Aichholzer, O.: The path of a triangulation. In: Proceedings of the 15th Annual Symposium on Computational Geometry, SoCG ’99, pp. 14–23. ACM Press, New York (1999)Google Scholar
  2. 2.
    Aichholzer, O., Krasser, H.: The point set order type data base: a collection of applications and results. In: Proceedings of the 13th Canadian Conference on Computational Geometry, CCCG ’01, pp. 17–20. Waterloo (2001)Google Scholar
  3. 3.
    Aichholzer, O., Hurtado, F., Noy, M.: A lower bound on the number of triangulations of planar point sets. Comput. Geom. 29(2), 135–145 (2004)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Aichholzer, O., Aurenhammer, F., Huemer, C., Vogtenhuber, B.: Gray code enumeration of plane straight-line graphs. Graphs Comb. 23(5), 467–479 (2007)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Aichholzer, O., Hackl, T., Huemer, C., Hurtado, F., Krasser, H., Vogtenhuber, B.: On the number of plane geometric graphs. Graphs Comb. 23(1), 67–84 (2007)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Ajtai, M., Chvátal, V., Newborn, M., Szemerédi, E.: Crossing-free subgraphs. In: Peter, G.S., Hammer, L., Rosa, A., Turgeon, J. (eds.) Theory and Practice of Combinatorics a Collection of Articles Honoring Anton Kotzig on the Occasion of His Sixtieth Birthday. North-Holland Mathematics Studies, vol. 60, pp. 9–12. North-Holland, Amsterdam (1982)Google Scholar
  7. 7.
    Alvarez, V., Seidel, R.: A simple aggregative algorithm for counting triangulations of planar point sets and related problems. In: Proceedings of the 29th Annual Symposium on Computational Geometry, SoCG ’13, pp. 1–8. ACM Press, New York (2013)Google Scholar
  8. 8.
    Alvarez, V., Bringmann, K., Curticapean, R., Ray, S.: Counting crossing-free structures. In: Proceedings of the 28th Annual Symposium on Computational Geometry, SoCG ’12, pp. 61–68. ACM Press, New York (2012)Google Scholar
  9. 9.
    Alvarez, V., Bringmann, K., Curticapean, R., Ray, S.: Counting triangulations and other crossing-free structures via onion layers. Computing Research Repository (CoRR) (2013). Available at http://arxiv.org/abs/1312.4628
  10. 10.
    Alvarez, V., Bringmann, K., Ray, S.: A simple sweep line algorithm for counting triangulations and pseudo-triangulations. Computing Research Repository (CoRR) (2013). Available at http://arxiv.org/abs/1312.3188
  11. 11.
    Alvarez, V., Bringmann, K., Ray, S., Seidel, R.: Counting triangulations and other crossing-free structures approximately. Comput. Geom. 48(5), 386–397 (2015)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Anagnostou, E., Corneil, D.: Polynomial-time instances of the minimum weight triangulation problem. Comput. Geom. 3(5), 247–259 (1993)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Auer, T., Held, M.: Heuristics for the generation of random polygons. In: Proceedings of the 8th Canadian Conference on Computational Geometry, CCCG ’96, pp. 38–43. (1996)Google Scholar
  14. 14.
    Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1–3), 21–46 (1996)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Bespamyatnikh, S.: An efficient algorithm for enumeration of triangulations. Comput. Geom. 23(3), 271–279 (2002)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4(1–4), 97–108 (1989)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Dalal, K.: Counting the onion. Random Struct. Algorithms 24(2), 155–165 (2004)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Demaine, E., Mitchell, J.S.B., O’Rourke, J.: Problem 16: Simple Polygonalizations. http://cs.smith.edu/~orourke/TOPP/P16.html#Problem.16 (2014). Accessed 12 May 2014
  19. 19.
    Dumitrescu, A., Schulz, A., Sheffer, A., Tóth, C.D.: Bounds on the maximum multiplicity of some common geometric graphs. SIAM J. Discrete Math. 27(2), 802–826 (2013)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Flajolet, P., Noy, M.: Analytic combinatorics of non-crossing configurations. Discrete Math. 204(1–3), 203–229 (1999). Selected papers in honor of Henry W. GouldCrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006)Google Scholar
  22. 22.
    García, A., Noy, M., Tejel, J.: Lower bounds on the number of crossing-free subgraphs of \({K}_n\). Comput. Geom. 16(4), 211–221 (2000)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Hjelle, Ø., Dæhlen, M.: Triangulations and Applications (Mathematics and Visualization). Springer, Berlin (2006)Google Scholar
  24. 24.
    Hoffmann, M., Schulz, A., Sharir, M., Sheffer, A., Tóth, C., Welzl, E.: Counting plane graphs: flippability and its applications. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 303–325. Springer, New York (2013)CrossRefGoogle Scholar
  25. 25.
    Huemer, C., de Mier, A.: Lower bounds on the maximum number of non-crossing acyclic graphs. arXiv preprint 1310.5882, (2013). Available http://arxiv.org/abs/1310.5882
  26. 26.
    Katoh, N., Tanigawa, S.: Fast enumeration algorithms for non-crossing geometric graphs. Discrete Comput. Geom. 42(3), 443–468 (2009)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Ray, S., Seidel, R.: A simple and less slow method for counting triangulations and for related problems. In: Proceedings of the 20th European Workshop on Computational Geometry, EWCG ’04 (2004)Google Scholar
  28. 28.
    Razen, A., Welzl, E.: Counting plane graphs with exponential speed-up. In: Calude, C., Rozenberg, G., Salomaa, A. (eds.) Rainbow of Computer Science, vol. 6570, pp. 36–46. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Santos, F., Seidel, R.: A better upper bound on the number of triangulations of a planar point set. J. Comb. Theory Ser. A 102(1), 186–193 (2003)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Sharir, M., Welzl, E.: On the number of crossing-free matchings, cycles, and partitions. SIAM J. Comput. 36(3), 695–720 (2006)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Sharir, M., Sheffer, A.: Counting triangulations of planar point sets. Electron. J. Comb. 18(1), P70 (2011)MathSciNetGoogle Scholar
  32. 32.
    Sharir, M., Sheffer, A., Welzl, E.: On degrees in random triangulations of point sets. J. Comb. Theory Ser. A 118(7), 1979–1999 (2011)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Sharir, M., Sheffer, A., Welzl, E.: Counting plane graphs: perfect matchings, spanning cycles, and Kasteleyn’s technique. J. Comb. Theory Ser. A 120(4), 777–794 (2013)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Sheffer, A.: Numbers of plane graphs. http://www.cs.tau.ac.il/~sheffera/counting/PlaneGraphs.html (2014). Accessed May 12 2014
  35. 35.
    Wettstein, M.: Counting and enumerating crossing-free geometric graphs. In: Proceedings of the 30th annual Symposium on Computational Geometry, SoCG ’14, pp. 1–10. ACM Press, New York (2014)Google Scholar
  36. 36.
    Zhu, C., Sundaram, G., Snoeyink, J., Mitchell, J.S.: Generating random polygons with given vertices. Comput. Geom. 6(5), 277–290 (1996)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Victor Alvarez
    • 1
  • Karl Bringmann
    • 2
  • Radu Curticapean
    • 1
  • Saurabh Ray
    • 3
  1. 1.Fachrichtung InformatikUniversität des SaarlandesSaarbrückenGermany
  2. 2.Institute of Theoretical Computer ScienceETH ZurichZurichSwitzerland
  3. 3.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations