Discrete & Computational Geometry

, Volume 53, Issue 2, pp 276–295 | Cite as

Fixed-Parameter Complexity and Approximability of Norm Maximization

  • Christian Knauer
  • Stefan König
  • Daniel Werner


The problem of maximizing the \(p\)th power of a \(p\)-norm over a halfspace-presented polytope in \(\mathbb {R}^d\) is a convex maximization problem which plays a fundamental role in computational convexity. Mangasarian and Shiau showed in 1986 that this problem is \(\mathbb {NP}\)-hard for all values \(p \in \mathbb {N}\) if the dimension \(d\) of the ambient space is part of the input. In this paper, we use the theory of parameterized complexity to analyze how heavily the hardness of norm maximization relies on the parameter \(d\). More precisely, we show that for \(p=1\) the problem is fixed-parameter tractable (in FPT for short) but that for all \(p >1\) norm maximization is W[1]-hard. Concerning approximation algorithms for norm maximization, we show that, for fixed accuracy, there is a straightforward approximation algorithm for norm maximization in FPT running time, but there is no FPT-approximation algorithm with a running time depending polynomially on the accuracy. As with the \(\mathbb {NP}\)-hardness of norm maximization, the W[1]-hardness immediately carries over to various radius computation tasks in computational convexity.


Fixed parameter complexity Computational convexity  Computational geometry Approximation algorithms Unbounded dimension 


  1. 1.
    Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  2. 2.
    Bodlaender, H., Gritzmann, P., Klee, V., van Leeuwen, J.: Computational complexity of norm-maximization. Combinatorica 10(2), 203–225 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Brieden, A.: Geometric optimization problems likely not contained in APX. Discrete Comput. Geom. 28(2), 201–209 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Brieden, A., Gritzmann, P., Kannan, R., Klee, V., Lovász, L., Simonovits, M.: Deterministic and randomized polynomial-time approximation of radii. Mathematika 48(1–2), 63–105 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Cabello, S., Giannopoulos, P., Knauer, C.: On the parameterized complexity of \(d\)-dimensional point set pattern matching. In: Bodlaender, H., Langston, M. (eds.) Parameterized and Exact Computation, Lecture Notes in Computer Science, vol. 4169, pp. 175–183. Springer, Berlin (2006)Google Scholar
  6. 6.
    Cabello, S., Giannopoulos, P., Knauer, C., Marx, D., Rote, G.: Geometric clustering: fixed-parameter tractability and lower bounds with respect to the dimension. ACM Trans. Algorithms 7(4), 43:1–43:27 (2011)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D., Kanj, I.A., Xia, G.: Tight lower bounds for certain parameterized NP-hard problems. Inf. Comput. 201(2), 216–231 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Berlin (2008)CrossRefGoogle Scholar
  9. 9.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, Berlin (2013)CrossRefGoogle Scholar
  10. 10.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. Springer, Berlin (2006)Google Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  12. 12.
    Giannopoulos, P., Knauer, C., Whitesides, S.: Parameterized complexity of geometric problems. Comput. J. 51(3), 372–384 (2008)CrossRefGoogle Scholar
  13. 13.
    Giannopoulos, P., Knauer, C., Rote, G.: The parameterized complexity of some geometric problems in unbounded dimension. In: Chen, J., Fomin, F. (eds.) Parameterized and Exact Computation, Lecture Notes in Computer Science, vol. 5917, pp. 198–209. Springer, Berlin (2009)Google Scholar
  14. 14.
    Giannopoulos, P., Knauer, C., Rote, G., Werner, D.: Fixed-parameter tractability and lower bounds for stabbing problems. Comput. Geom. 46(7), 839–860 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Gritzmann, P., Klee, V.: Inner and outer j-radii of convex bodies in finite-dimensional normed spaces. Discrete Comput. Geom. 7(1), 255–280 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Gritzmann, P., Klee, V.: Computational complexity of inner and outer \(j\)-radii of polytopes in finite-dimensional normed spaces. Math. Program. 59(1), 163–213 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Gritzmann, P., Klee, V.: Computational Convexity. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 491–515. CRC Press, Boca Raton (1997)Google Scholar
  18. 18.
    Gritzmann, P., Habsieger, L., Klee, V.: Good and bad radii of convex polygons. SIAM J. Comput. 20(2), 395–403 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Impagliazzo, R., Paturi, R.: On the complexity of \(k\)-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Knauer, C.: The complexity of geometric problems in high dimension. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds.) Theory and Applications of Models of Computation, Lecture Notes in Computer Science, vol. 6108, pp. 40–49. Springer, Berlin (2010)Google Scholar
  21. 21.
    Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bull. EATCS 3(105), 41–71 (2013)MathSciNetGoogle Scholar
  22. 22.
    Mangasarian, O.L., Shiau, T.-H.: A variable-complexity norm maximization problem. SIAM J. Algebr. Discrete Methods 7(3), 455–461 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. ACM 31(1), 114–127 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2006)Google Scholar
  25. 25.
    Papadimitriou, C.H.: Computational Complexity. Wiley, New York (1993)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Christian Knauer
    • 1
  • Stefan König
    • 2
  • Daniel Werner
    • 3
  1. 1.Institut für InformatikUniversität BayreuthBayreuthGermany
  2. 2.Institut für MathematikTechnische Universität Hamburg-HarburgHamburgGermany
  3. 3.Fachbereich Mathematik und InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations